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 n voters 
 m alternatives 
 Voters rank the alternatives 
 Profile: one ranking per voter 

 
 
 
 
 

 Voting rule: takes a profile as input and returns a 
winning alternative or an aggregate ranking 
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 There is a ground truth 
 Noisy votes around this truth are drawn 

according to a prob. distribution 
 Can a voting rule discover the truth? 

 
 Questions: 

 How many samples do we need in the Mallows prob. 
distribution? 

 For more general distributions, can voting rules 
discover the truth with infinitely many samples? 



 Human computation 

 EteRNA, Foldit, 
Crowdsourcing, etc. 

 How many users/ workers 
are required?  

 

 Judgment aggregation 

 Jury system, experts ranking, 
etc. 

 How many experts are 
required? 

 



 A: the set of m alternatives 

 E.g., A = {a,b,c} 

 L(A): the set of all possible rankings of the 
alternatives in A 

 σ є L(A): a vote (ranking of the alternatives) 

 E.g., σ = b > c > a 

 



 An example (assuming a true ranking σ*) 

 Rank any pair of alternatives as in σ* with prob. p and 
incorrectly with prob. 1-p 

 If no ranking is defined, repeat 

 

 Proposed by Condorcet; today known as 
Mallows model 

 Pr[σ|σ*] ~ exp(-Θ(dKT(σ,σ*))) 

 where dKT is the Kendall tau distance 



 A function d: L(A)2R≥0 is called a distance 
function when 

 d(σ,σ’) = 0 if and only if σ = σ’ 

  d(σ,σ’) = d(σ’,σ)  

  d(σ,σ’) ≤ d(σ,τ)+d(τ,σ’) 

 Example: 

 Kendall tau: number of disagreements between all 
pairs  of alternatives 

 Other: footrule, max displacement, Caley, Hamming 



 σ1 = a > b > c > d > e 
 σ2 = b > c > a > e > d 

 
 Kentall tau = 3 
 Footrule = 6 
 Max displacement = 2 



 n voters 
 Voting rule r: L(A)n L(A) 

 defined for all values of n>0 

 π є L(A)n: a profile of the votes 
 

 The voting rule computes an aggregate ranking 
for each profile 
 

 Can also be randomized 
 Also known as social welfare functions 



 Positional scoring rules:  

 Scoring vector (α1,α2,…,αm)  

 Each voter awards α1 points to his most preferred 
alternative, α2 points to his second most preferred 
one, and so on 

 The alternatives are sorted in the descending order 
of their total points 

 Kemeny: 

 Compute the ranking that minimizes the sum of 
Kendall tau distances from all votes 



 Sample complexity Nr(є) 

 minimum number of samples so that the accuracy 
(i.e., the probability that voting rule r returns the 
ground truth) is at least 1-є 

 
 Theorem: Kemeny with uniform tie breaking has 

optimal Mallows sample complexity over all 
randomized voting rules 



 Theorem: Kemeny has Mallows sample 
complexity O(log(m/є)) 

 Theorem: Plurality has exponential Mallows 
sample complexity 

 Theorem: All scoring rules with adjacent scores 
differing by at most U and at least L have 
Mallows sample complexity poly(m, U/L, log1/є) 
 Borda, Harmonic 

 
 Open question: What is the optimal Mallows 

sample complexity among scoring rules? 



 Two general classes of voting rules: 
 Pairwise majority consistent (PM-c) voting rules 

 Position dominance consistent  (PD-c) voting rules 

 
 When there is “consensus” among the voters 

about the winning ranking, the voting rule 
should return this ranking as well 
 

 So, the two classes will be defined by two 
different definitions of “consensus” 



 Given a profile π, its pairwise majority (PM) 
graph is defined as follows: 

 The alternatives are the nodes 

 For any pair of nodes a and b, there is a directed edge 
from a to b if the majority of the voters prefer a to b 

 When the PM-graph of π is complete and 
acyclic, it reduces to a ranking σ 

 A voting rule r is PM-c if r(π)= σ whenever the 
PM-graph of the profile π  reduces to the 
ranking σ 
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 An alternative a position-dominates another 
alternative b if, for every i, a appears more times 
in the first i positions of votes than b 

 PD-graph: directed graph indicating position 
domination between alternatives 

 When the PD-graph of π is complete, it reduces 
to a ranking σ 

 A voting rule r is PD-c if r(π)= σ whenever the 
PD-graph of π  reduces to σ 



 No voting rule can be both PM-c and PD-c 
 
 
 
 

 The PM-c and PD-c graphs reduce to a>b>c and 
b>a>c respectively 

 
 PM-c: Kemeny, Ranked pairs, Copeland, Schulze 
 PD-c: scoring rules, Bucklin 
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 Any PM-c rule has Mallows sample complexity 
O(log(m/є)) 

 Exponential bounds for PD-c rules 



 Let’s generalize: define the probabilities Pr[σ|σ*] 
in a different way 

 A noise model is called monotonic with respect 
to a distance function d if (for true ranking σ*)  

 d(σ,σ*) < d(σ’,σ*) implies Pr[σ|σ*] > Pr[σ’|σ*] and 
d(σ,σ*) = d(σ’,σ*) implies Pr[σ|σ*] = Pr[σ’|σ*] 



 Sample complexity can be huge 
 What about accuracy in the limit? 

 We require that the true ranking is returned with 
prob. 1 when a voting rule is applied on infinitely 
many samples 

 For example, all rules mentioned are accurate in the 
limit for Mallows 

 A voting rule is d-monotone robust if it is 
accurate in the limit for all d-monotonic noise 
models 



 When all PM-c/PD-c voting rules are d-
monotone robust? 

 i.e., accurate in the limit for every d-monotonic noise 
model 

 Theorem: All PM-c voting rules are d-monotone 
robust iff d is majority concentric (MC) 

 Theorem: All PD-c voting rules are d-monotone 
robust iff d is position concentric (PC) 



 For any integer k, ranking σ and alternatives 
a, b such a > b in σ, the number of rankings 
with a > b at distance at most k is not smaller 
than the number of rankings with b > a 

σ 



 A bit more technical definition that takes into 
account the appearances of the alternatives in 
the i top positions of rankings 



 Corollary: All PM-c and PD-c voting rules are d-
monotone robust iff d is both MC and PC 
 

 Kentall tau, footrule, and max displacement are 
both MC and PC  



 Summary of contribution 

 Sample complexity of voting rules in the Mallows 
model 

 Generalizations to other noise models using the 
relaxed requirement of accuracy in the limit 

 
 Very recent work 

 Modal ranking: monotone-robust wrt all distance 
functions 


