Voting as Maximum Likelihood Estimation: Revisiting the Rationality Assumption

Edith Elkind University of Oxford

- Elkind, Slinko Chapter 8: Rationalizations of Voting Rules, in Handbook of Computational Social Choice (eds. Brandt, Conitzer, Endriss, Lang, Procaccia)
- Elkind, Shah
 Electing the Most Probable Without
 Eliminating the Irrational:
 Voting Over Intransitive Domains,
 in UAI'14

Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth.

Voting as Preference Aggregation

- What should we get for dinner in Sibiu?
 - Ulle: pork > rabbit > pancake
 - Jerome: rabbit > pancake > pork
 - Edith: pancake > rabbit > pork
- What cake should we order for Yasha's birthday?
 - Dima: chocolate > strawberry > yoghurt
 - Edith: strawberry > yoghurt > chocolate
 - Yasha: yoghurt > strawberry > chocolate

Voting Rules: Plurality

- Plurality: each alternative gets
 - 1 point from each voter who ranks it 1st
 - O points from each voter who does not rank it 1st

Voting Rules: Borda

- Borda: each alternative gets
 m-i points from each voter who ranks it ith
- Jean-Charles de Borda (1733-1799), French mathematician, physicist, political scientist, sailor

Voting Rules: Condorcet

- Condorcet rule:
 - A beats B if majority of voters prefer A to B
 - the Condorcet winner is the alternative that beats every other alternative

• Marquis de Condorcet (1743-1794), French philosopher, mathematician, political scientist

Voting Rules: Dodgson

• Dodgson rule:

- if there is a Condorcet winner, elect him
- else, try to make each alternative a Condorcet winner by making swaps of adjacent candidates
- winner: candidate that needs the min # of swaps
- Charles Dodgson, aka Lewis Carroll (1832-1898): English mathematician, logician, Anglican deacon

Voting Rules: Kemeny

• Kemeny rule:

- for two votes u,v, let $d(u,v)=\# \{(A,B): A >_u B, B >_v A\}$
- find a ranking that minimizes
 the total distance to votes
- output the top alternative is this ranking
- John Kemeny (1926-1992): Hungarian-American mathematician and computer scientist, co-developer of BASIC

 proposed his rule in 1959

So How Should We Aggregate Preferences?

- Plurality, Borda, Condorcet, Dodgson, Kemeny, ...
- Different normative properties
- Choosing a rule may be as hard as choosing the winner!

Voting as a Way to Uncover Truth

- Which cleaning company should we hire?
 - Adam: A > B > C
 - Ben: C > B > A
 - Charlie: B > C > A
- Which PhD applicant should we accept?
 - Mike: X > Y > Z
 - Tomasz: Y > X > Z
 - Edith: Z > Y > X
- Medieval church elections
- Crowdsourcing

Voting as Maximum Likelihood Estimation

Which true state of the world is most likely to generate the observed votes?

History

- Marquis de Condorcet (1785), Essai sur l'application de l'analyse a la probabilité des décisions rendues a la pluralité des voix
- H. Peyton Young (1988), Condorcet's theory of voting, Am. Pol. Sci. Review
- Conitzer, Sandholm (2005), Common Voting Rules as Maximum Likelihood Estimators, UAI'05
- Procaccia, Reddy, Shah (2012), A maximum likelihood approach to selecting sets of alternatives, UAI'12
- Elkind, Slinko (forthcoming), Rationalizations of voting rules, in Handbook of Computational Social Choice
- Elkind, Shah (2014), Choosing the most probable without eliminating the irrational: voting on intransitive domains, UAI'14
- Xia (2014), Note on Young's interpretation of Condorcet's model, manuscript

Condorcet -Young's Model

- m alternatives, n voters: V = (v₁, ..., v_n)
- Ground truth = ranking of the alternatives
- Votes = rankings of the alternatives
- Noise:
 - fix ½ < p <1
 - ground truth: u
 - each vote is an outcome of the following process:
 - pick a fresh pair of alternatives a, b; assume a >_u b
 - rank them as a > b w.p. p and as b > a w.p. 1-p
 - if this produces a cycle, restart

Most Likely Ranking [Young'88]

- Kemeny distance: d(u, v) = |{(a, b): a >_u b, b >_v a}|
- $\phi = p/(1-p)$
- $\Pr[v] \sim p^{m(m-1)/2 d(u, v)} (1-p)^{d(u, v)}$
- $Pr[V] = Pr[v_1] \times ... \times Pr[v_n] \sim \phi^{-\sum_i d (u, v_i)}$
- $Pr[V] \sim \phi^{-d(u, V)}$
- Most likely ranking: one that minimizes the total distance to votes
 - Kemeny's rule

Rankings vs. Winners

- Finding the most likely ranking: Kemeny's rule
- Finding the most likely winner?
 - Kemeny winners:
 top alternatives of most likely rankings
 - Kemeny winners ≠ most likely winners
- s_R(a): cumulative likelihood of rankings where a is ranked first
- $s_R(a) = \sum_{u: top(u)=a} \phi^{-d(u, V)}$
- Which a maximizes s_R(a)?

Most Likely Winner [Y'88, PRS'12]

- $s_R(a) = \sum_{u: top(u)=a} \phi^{-d(u, V)}$
- s_R(a): sum of (m-1)! non-positive powers of
- $p \rightarrow 1$, $\phi = p/(1-p) \rightarrow \infty$ (low noise):

 the set of most likely winners is a subset of Kemeny winners

• $p \rightarrow 1/2$, $\phi = p/(1-p) \rightarrow 1$ (high noise):

 the set of most likely winners is a subset of Borda winners

Whodunit?

• Young'88:

- Condorcet recognized the difference between estimating rankings and estimating winners
- perhaps he chose not to pursue the winners case because he did not get along with Borda
- Young'88 claims to get
 Borda for p → 1/2, Maximin (?) for p → 1
 calculation for an example 3-candidate profile
- PRS'12: more general setting, easily verifiable calculation

Rankings vs. Tournaments

- Can we lower the complexity by allowing non-transitivity...
 - in voters' preferences?
 - in the ground truth?
- I.e., replace rankings with tournaments?

Non-transitive Ground Truth???

- How can it be that in the true state of the world A > B, B > C, but C > A???
 - 1. the true state of the world may be obtained by aggregating rankings
 - 2. just a mental experiment...
- S_T(a) = total likelihood of tournaments where a beats all other alternatives
- most likely winner: argmax _a S_T(a)

Most Likely Winner: Tournaments

- n(a, b): # of voters who prefer a to b
- ground truth: T (tournament)
- Pr [a beats everyone in T | V]

~ $\Pi_{b\neq a} (1+\phi^{n(b, a)-n(a, b)})^{-1}$

- $S_T(a) = \prod_{b \neq a} (1 + \phi^{n(b, a) n(a, b)})^{-1}$
- $s_T(a) = 1/S_T(a) = \prod_{b \neq a} (1 + \phi^{n(b, a) n(a, b)})$
- most likely alternatives: argmin _a s_T(a)

Most Likely Winners: Tournaments

• $s_T(a) = \prod_{b \neq a} (1 + \phi^{n(b, a) - n(a, b)})$

- most likely alternative: min s_T

• $p \rightarrow 1$, $\phi = p/(1-p) \rightarrow \infty$ (low noise)

- most likely winners minimize

 $\sum_{b: n(b, a) > n(a, b)} n(b, a) \text{ (Tideman's score)}$ - hence, the set of most likely winners is a subset of Tideman winners

- $p \rightarrow 1/2$, $\phi = p/(1-p) \rightarrow 1$ (high noise)
 - the set of most likely winners
 is a subset of Borda winners

Aside: Tideman's Rule

а

n_{ba}

 \mathbf{n}_{ca}

b

- $s(a) = \sum_{b: n(b, a) > n(a, b)} n(b, a)$
- Proposed in [Tideman'87] as an approximation to Dodgson's rule
- Shown to be an asymptotically c
 optimal approximation to
 Dodgson's rule [Caragiannis et al., EC'10]
- Elkind, Shah'14: Tideman's rule is a (poly-time)
 2-approximation of Kemeny's rule

Whodunit?

 Calculations in [Young'88] are actually for the tournament model!

though this is not stated explicitly

 The rule that Young refers to as Maximin is actually Tideman's rule

– [Tideman'87] vs [Young'88]: communication?

- Young does not point out that for $p \rightarrow 1/2$ we get a refinement of Borda, not Borda itself
- [Elkind, Shah'14] clarifying all this (+ more)
- [Xia'14]: same conclusions

Rankings vs. Tournaments

	low noise	high noise
rankings	Kemeny*	Borda*1
tournaments	Tideman*	Borda* ²

Borda^{*1} and Borda^{*2} may produce disjoint sets of winners [Elkind, Shah'14]

Computational Issues: Rankings

- $s_R(a) = \sum_{u: top(u)=a} \phi^{-d(u, V)}$ - sum of (m-1)! "polynomial" terms
- p → 1: computing Kemeny winners is NP-hard

 even if the winner is unique
 ⇒ computing a refinement of Kemeny's rule
 is NP-hard, too
- $p \rightarrow 1/2$: computing Borda winners is easy
 - but complexity of finding winners in Condorcet Young's model under high noise is an open problem

Computational Issues: Tournaments

- $s_T(a) = \prod_{b \neq a} (1 + \phi^{n(b, a) n(a, b)})$
 - "polynomial" of deg $\leq 2mn$
 - product of m-1 brackets
 - coefficients can be computed explicitly

Agnostic Rule

- For estimating winners, the answer depends on p
 - both for rankings and for tournaments
- Typically, p is not known
- [Elkind, Shah'14]: output all alternatives that are most likely for some p (agnostic rule)
- <u>Experiments</u>: this rule is reasonably decisive

Conclusions and Open Problems

- Even classic papers may sometimes be wrong
 [Young'88] has 622 citations on Google Scholar
- Writing surveys is useful
- <u>Open</u>: complexity in the rankings model
- <u>Open</u>: understanding the agnostic rule
- <u>Open</u>: other noise models