Distance Rationalizability: Information Merging through Consensus Seeking

> **Piotr Faliszewski** AGH University Kraków, Poland

- **Baigent, N. (1987).** Metric rationalisation of social choice functions according to principles of social choice. Mathematical Social Sciences.
- Baigent, N., & Klamler, C. (2004). Transitive closure, proximity and intransitivities. Economic Theory.
- Campbell, D., & Nitzan, S. (1986). Social compromise and social metrics. Social Choice and Welfare.
- Eckert, D., & Klamler, C. (2011). Distance-based aggregation theory. In Consensual processes.
- Elkind, E., Faliszewski, P., & Slinko, A. (2012). Rationalizations of Condorcetconsistent rules via distances of Hamming type. Social Choice and Welfare.
- Elkind, E., Faliszewski, P., & Slinko, A. (2012). Distance Rationalization of Voting Rules, manuscript.
- Lerer, E., & Nitzan, S. (1985). Some general results on the metric rationalization for social decision rules. Journal of Economic Theory.
- Meskanen, T., & Nurmi, H. (2008). Closeness counts in social choice. In M. Braham & F. Steen (Eds.), Power, freedom, and voting. Springer-Verlag.
- Nitzan, S. (1981). Some measures of closeness to unanimity and their implications. Theory and Decision.

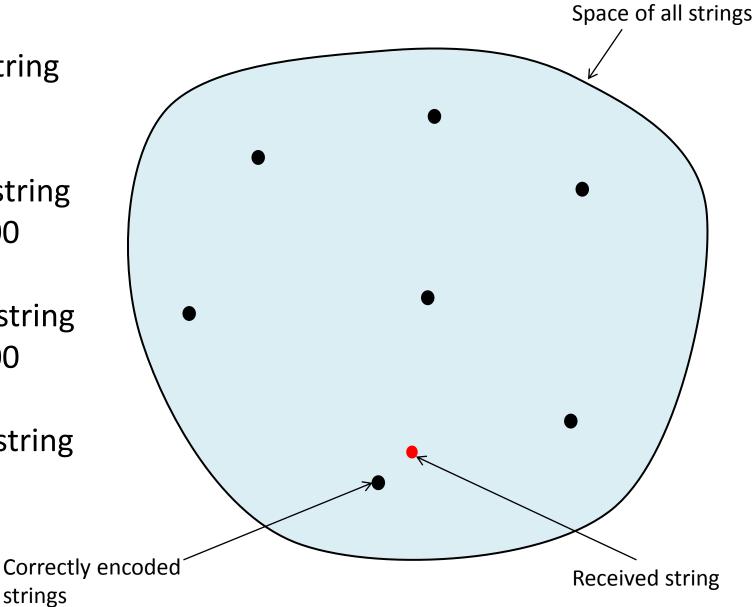
Baigent, N. (1987). Metric rationalisation of social choice functions according to principles of social choice. Mathematical Social Sciences.

- Baigent, N., & Klamler, C. (2004). Transitive closure, proximity and intransitivities. Economic Theory.
- Campbell, D., & Nitzan, S. (1986). Social compromise and social metrics. Social Choice and Welfare.
- Eckert, D., & Klamler, C. (2011). Distance-based aggregation theory. In Consensual processes.
- Elkind, E., Faliszewski, P., & Slinko, A. (2012). Rationalizations of Condorcetconsistent rules via distances of Hamming type. Social Choice and Welfare.

Elkind, E., Faliszewski, P., & Slinko, A. (2012). Distance Rationalization of Voting Rules, manuscript.

- Lerer, E., & Nitzan, S. (1985). Some general results on the metric rationalization for social decision rules. Journal of Economic Theory.
- Meskanen, T., & Nurmi, H. (2008). Closeness counts in social choice. In M. Braham & F. Steen (Eds.), Power, freedom, and voting. Springer-Verlag.
- Nitzan, S. (1981). Some measures of closeness to unanimity and their implications. Theory and Decision.

Coding Theory: Error Correcting Codes


Original string 010

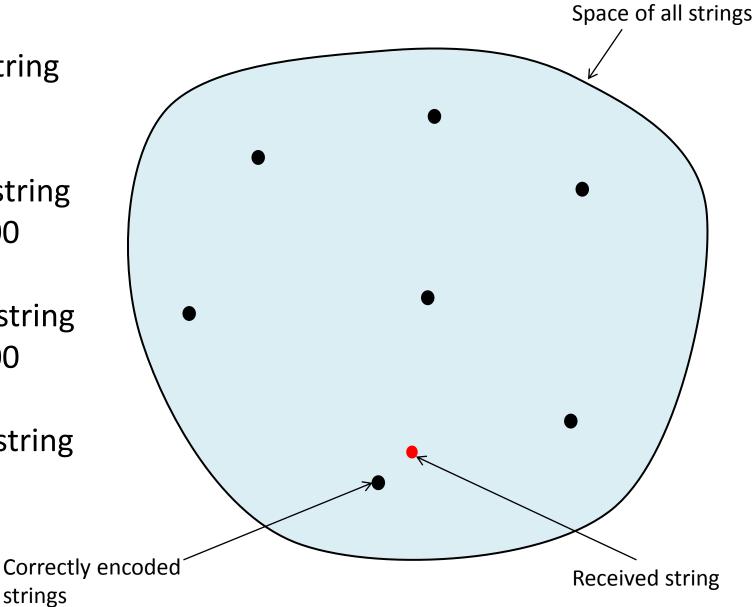
Encoded string 000111000

Received string 010011100

Decoded string 010

strings

Coding Theory: Error Correcting Codes


Original string 010

Encoded string 000111000

Received string 010011100

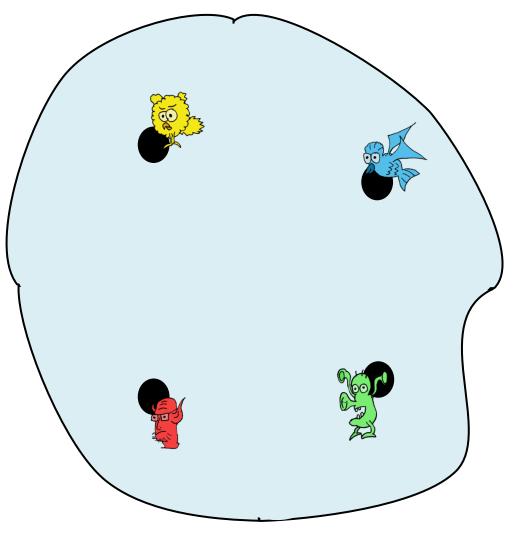
Decoded string 010

strings

Distance Rationalizability

Space:

All elections over


Elections with clear winners

(consensus notion)

- Condorcet winner?
- Always ranked first?
- Identical preference orders?

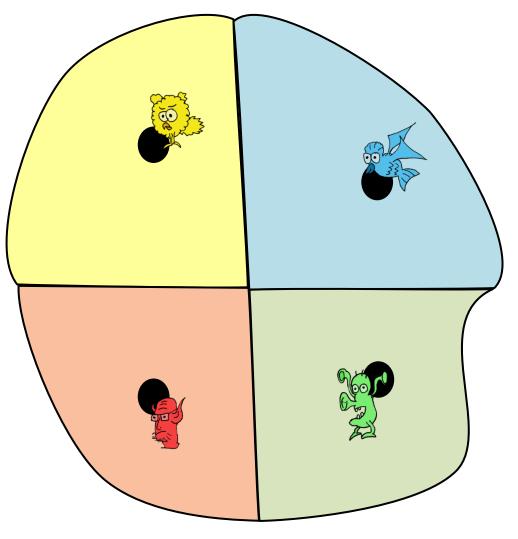
Distance notion

 Swap distance? Hamming distance?

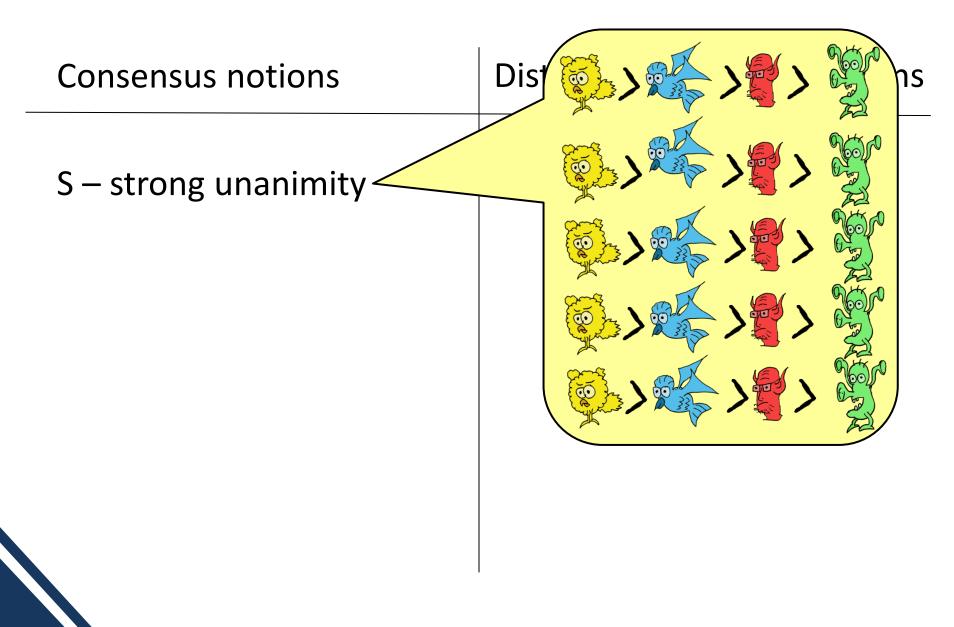
Distance Rationalizability

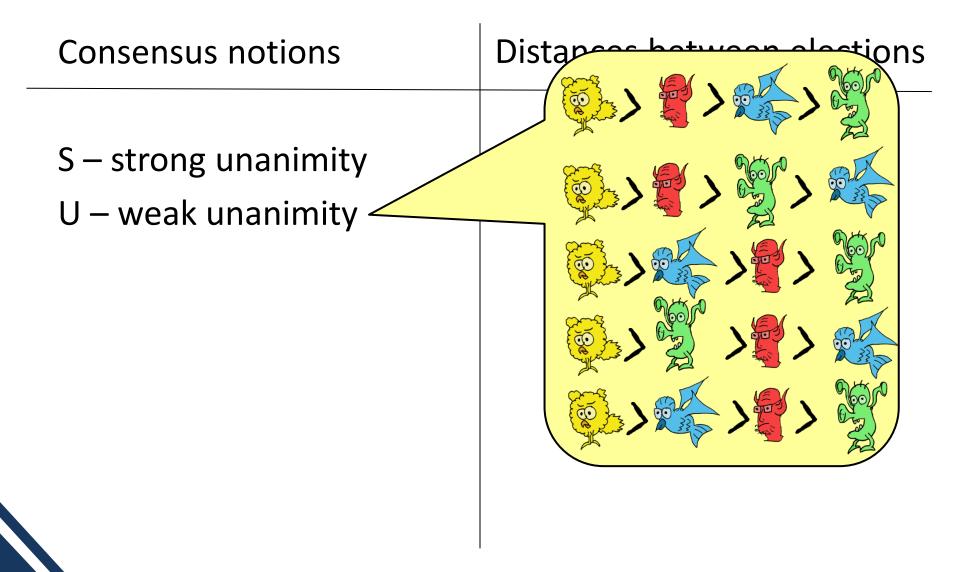
Space:

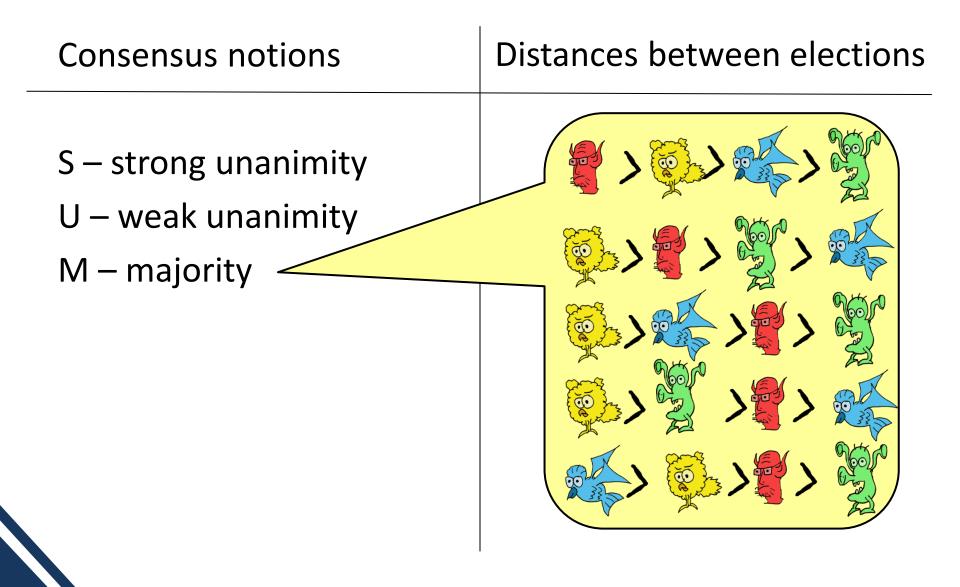
All elections over

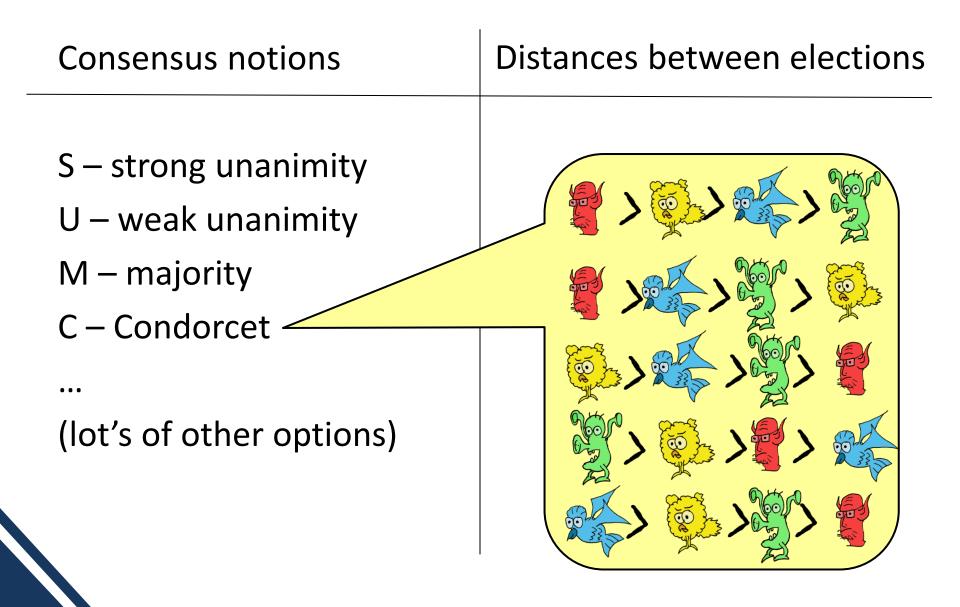

Elections with clear winners

(consensus notion)

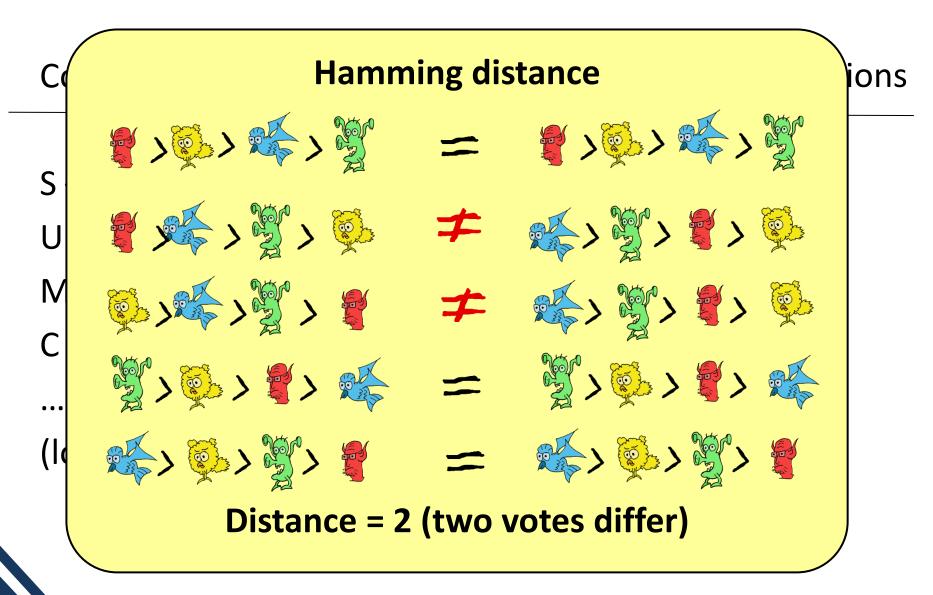

- Condorcet winner?
- Always ranked first?
- Identical preference orders?

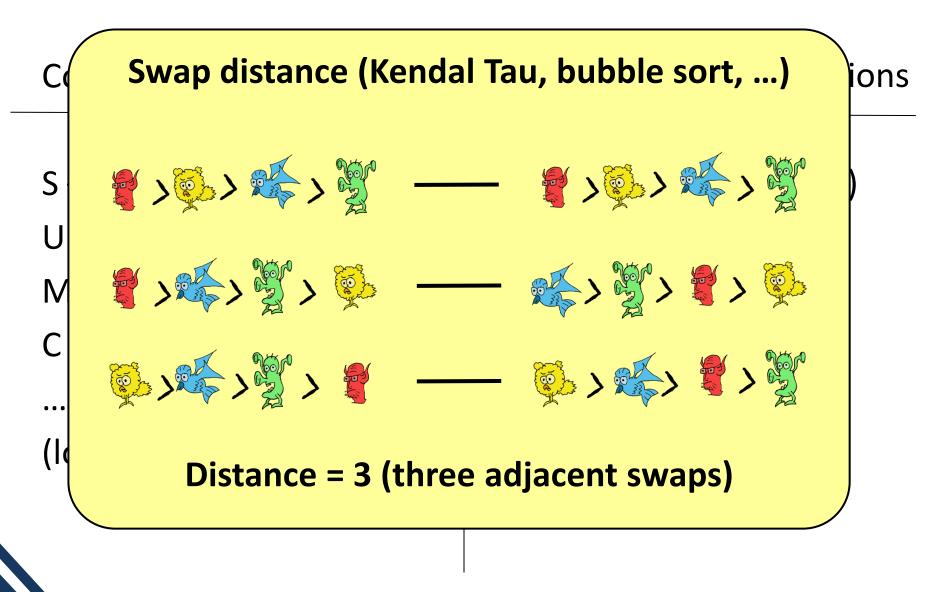

Distance notion


 Swap distance? Hamming distance?



Consensus notions	Distances between elections





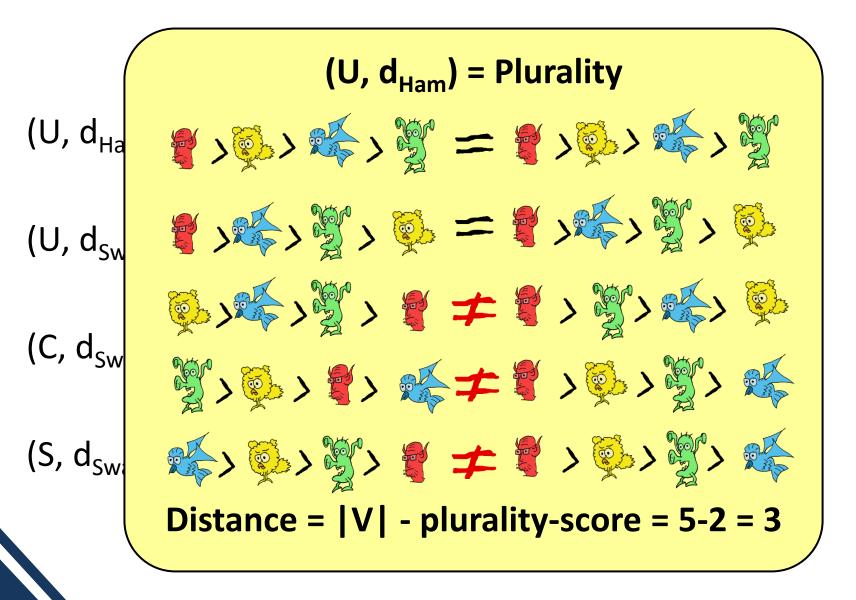
Consensus notions	Distances between elections
S – strong unanimity U – weak unanimity M – majority	Hamming distance (d _{Ham}) Swap distance (d _{Swap}) Pandom whatever
C – Condorcet (lot's of other options)	Random whatever 😳

Consensus notions	Distances between elections
S – strong unanimity U – weak unanimity M – majority	Hamming distance (d _{Ham}) Swap distance (d _{Swap}) Pandom whatever
C – Condorcet (lot's of other options)	Random whatever 😳

Putting Together a Voting Rule

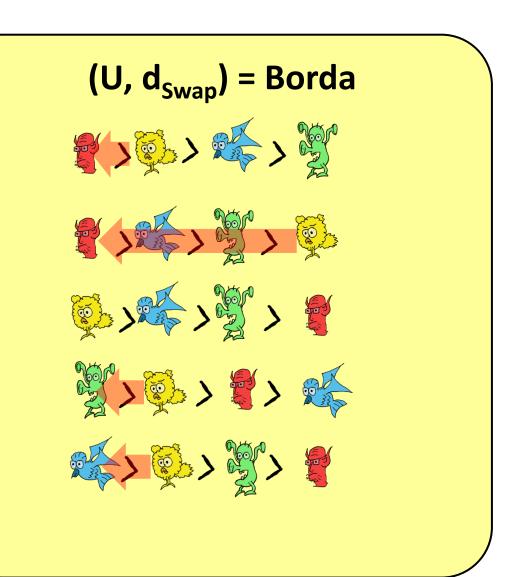
Setting

- K consensus notion (S, U, M, C, ...)
- d distance among elections
- R = (K, d) a voting rule
- Given election E = (C, V)
- C set of candidates
- V profile of preference orders


R = (K, d) selects candidate c such that the consensus from K where c wins is d-

closest to V

- $(U, d_{Ham}) = Plurality$
- $(U, d_{Swap}) = Borda$
- (C, d_{Swap}) = Dodgson
- (S, d_{Swap}) = Kemeny

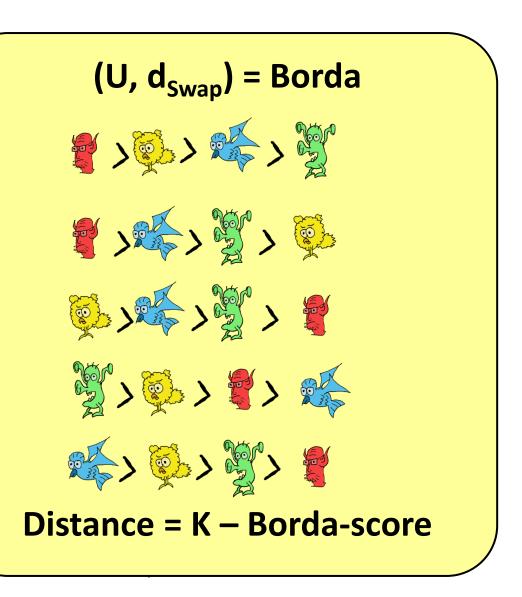


(U, d_{Ham}) = Plurality

(U, d_{Swap}) = Borda

(C, d_{Swap}) = Dodgson

(S, d_{Swap}) = Kemeny



(U, d_{Ham}) = Plurality

(U, d_{Swap}) = Borda

(C, d_{Swap}) = Dodgson

(S, d_{Swap}) = Kemeny

 $(U, d_{Ham}) = Plurality$

(U, d_{Swap}) = Borda (C, d_{Swap}) = Dodgson -

(S, d_{Swap}) = Kemeny

(C, d_{Swap}) = Dodgson

By definition – Dodgson's rule picks the candidate who can become Condorcet winner by fewest swaps

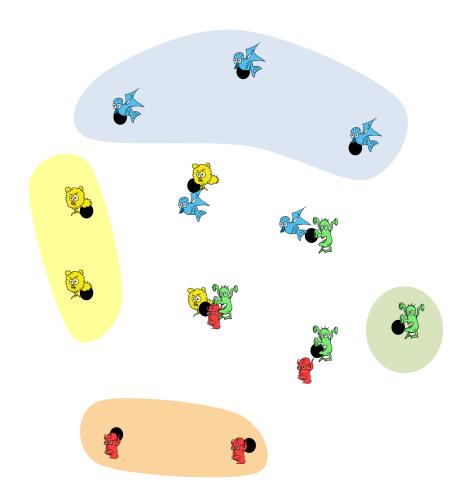
(U, d_{Ham}) = Plurality

 $(U, d_{Swap}) = Borda$

(C, d_{Swap}) = Dodgson

(S, d_{Swap}) = Kemeny

(S, d_{Swap}) = Kemeny

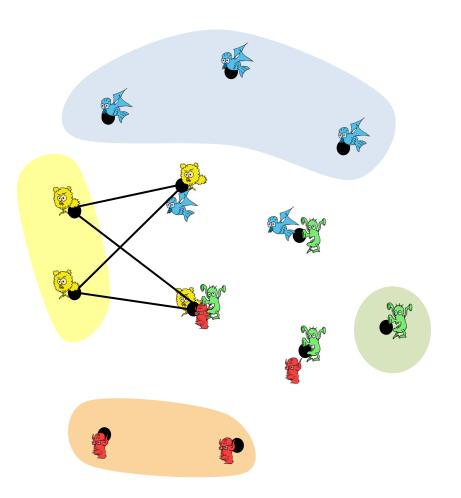

By definition – the consensus ranking is the Kemeny ranking, and we want to reach with fewest total number of swaps

Weird Rules Fit the Framework ("All" of them)

Thm. For (almost) every voting rule R there is a consensus class K and a distance function d such that:

$$\mathsf{R}=(\mathsf{K},\mathsf{d})$$

Typically, K can be the strong unanimity (S)


All elections under consideration are vertices

Weird Rules Fit the Framework ("All" of them)

Thm. For (almost) every voting rule R there is a consensus class K and a distance function d such that:

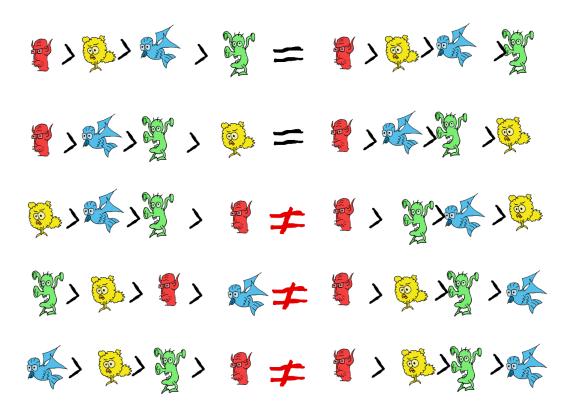
$$R = (K, d)$$

Typically, K can be the strong unanimity (S)

All elections under consideration are vertices

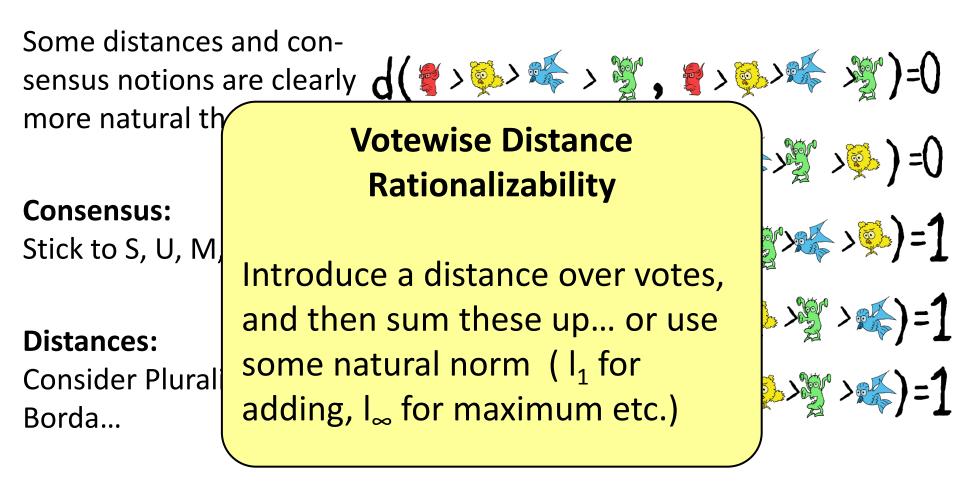
Weird Rules Fit the Framework ("All" of them)

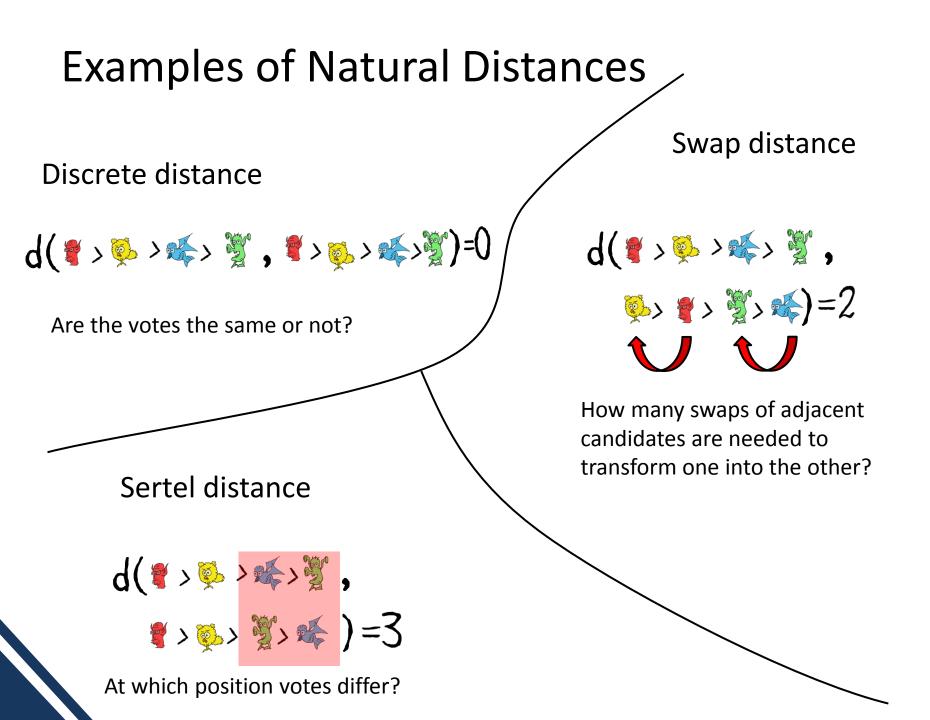
Thm. For (almost) every voting rule R there is a consensus class K and a distance function d such that: So what's the whole point? Typically, K can be the strong unanimity (S)


> All elections under considerations are vertices We use the shortest-path distance

Good Distance Rationalizations Are Essential

Some distances and consensus notions are clearly more natural than others.


Consensus: Stick to S, U, M, and C


Distances: Consider Plurality or Borda...

Good Distance Rationalizations Are Essential

	Consensus	Distance	
Voting rule	class	over votes	Norm
Plurality	U	$d_{ m discr}$	ℓ_1
Plurality	$ $ \mathcal{M}	$d_{ m discr}$	ℓ_1
Plurality	S	no name	ℓ_1
Voter replacement	С	d	Q.
rule	C	$d_{ m discr}$	ℓ_1
Kemeny	S	$d_{ m swap}$	ℓ_1
Borda	<i>U</i>	$d_{ m swap}$	ℓ_1
Threshold	U	$d_{ m swap}$	ℓ_{∞}
<i>M</i> -Borda	$ $ \mathcal{M}	$d_{ m swap}$	ℓ_1
Dodgson	C	$d_{ m swap}$	ℓ_1
$Dodgson^{\infty}$	С	$d_{ m swap}$	ℓ_{∞}
Borda	U	$d_{ m spear}$	ℓ_1
Borda	U	$d_{ m sert}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	$d_{lpha ext{-swap}}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	d_{lpha}	ℓ_1
\mathcal{M} -scoring rule \mathcal{M} - \mathcal{R}_{α}	\mathcal{M}	d_{lpha}	ℓ_1
Simplified Bucklin	\mathcal{M}	$d_{\infty ext{-spear}}$	ℓ_{∞}
Simplified Bucklin	\mathcal{M}	$d_{ m sert}$	ℓ_{∞}
Litvak	S	$d_{ m spear}$	ℓ_1

	Consensus	Distance	
Voting rule	class	over votes	Norm
Plurality	U	$d_{ m discr}$	ℓ_1
Plurality	$ $ \mathcal{M}	$d_{ m discr}$	ℓ_1
Plurality	S	no name	ℓ_1
Voter replacement	С	d y	ℓ_1
rule	L L	$d_{ m discr}$	ε1
Kemeny	S	$d_{ m swap}$	ℓ_1
Borda	<i>U</i>	$d_{ m swap}$	ℓ_1
Threshold	U U	$d_{ m swap}$	ℓ_{∞}
<i>M</i> -Borda	$ $ \mathcal{M}	$d_{ m swap}$	ℓ_1
Dodgson	C	$d_{ m swap}$	ℓ_1
Dodgson∞	С	$d_{ m swap}$	ℓ_{∞}
Borda	U	$d_{ m spear}$	ℓ_1
Borda	U	$d_{ m sert}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	$d_{lpha ext{-swap}}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	d_{lpha}	ℓ_1
\mathcal{M} -scoring rule \mathcal{M} - \mathcal{R}_{α}	\mathcal{M}	d_{lpha}	ℓ_1
Simplified Bucklin	\mathcal{M}	$d_{\infty ext{-spear}}$	ℓ_{∞}
Simplified Bucklin	\mathcal{M}	$d_{ m sert}$	ℓ_{∞}
Litvak	S	$d_{ m spear}$	ℓ_1

	Consensus	Distance	
Voting rule	class	over votes	Norm
Plurality	U	$d_{ m discr}$	ℓ_1
Plurality	\mathcal{M}	$d_{ m discr}$	ℓ_1
Plurality	S	no name	ℓ_1
Voter replacement	С	d	Q.
rule	C	$d_{ m discr}$	ℓ_1
Kemeny	S	$d_{ m swap}$	ℓ_1
Borda	U	$d_{ m swap}$	ℓ_1
Threshold	U	$d_{ m swap}$	ℓ_{∞}
<i>M</i> -Borda	\mathcal{M}	$d_{ m swap}$	ℓ_1
Dodgson	С	$d_{ m swap}$	ℓ_1
$Dodgson^{\infty}$	С	$d_{ m swap}$	ℓ_{∞}
Borda	U	$d_{ m spear}$	ℓ_1
Borda	U	$d_{ m sert}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	$d_{lpha- ext{swap}}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	d_{lpha}	ℓ_1
\mathcal{M} -scoring rule \mathcal{M} - \mathcal{R}_{α}	\mathcal{M}	d_{lpha}	ℓ_1
Simplified Bucklin	\mathcal{M}	$d_{\infty ext{-spear}}$	ℓ_{∞}
Simplified Bucklin	\mathcal{M}	$d_{ m sert}$	ℓ_{∞}
Litvak	S	$d_{ m spear}$	ℓ_1

	Consensus	Distance	
Voting rule	class	over votes	Norm
Plurality	U	$d_{ m discr}$	ℓ_1
Plurality	\mathcal{M}	$d_{ m discr}$	ℓ_1
Plurality	S	no name	ℓ_1
Voter replacement rule	С	$d_{ m discr}$	ℓ_1
Kemeny	S	$d_{ m swap}$	ℓ_1
Borda	U	$d_{ m swap}$	ℓ_1
Threshold	U	d_{swap}	ℓ_{∞}
\mathcal{M} -Borda	\mathcal{M}	$d_{ m swap}$	ℓ_1
Dodgson	С	$d_{ m swap}$	ℓ_1
$\mathrm{Dodgson}^{\infty}$	С	$d_{ m swap}$	ℓ_{∞}
Borda	U	$d_{ m spear}$	ℓ_1
Borda	U	$d_{ m sert}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	$d_{lpha ext{-swap}}$	ℓ_1
scoring rule \mathcal{R}_{α}	U	d_{lpha}	ℓ_1
\mathcal{M} -scoring rule \mathcal{M} - \mathcal{R}_{α}	\mathcal{M}	d_{lpha}	ℓ_1
Simplified Bucklin	\mathcal{M}	$d_{\infty ext{-spear}}$	ℓ_{∞}
Simplified Bucklin	\mathcal{M}	$d_{ m sert}$	ℓ_{∞}
Litvak	S	$d_{ m spear}$	ℓ_1

	Consensus	Distance	
Voting rule	class	over votes	Norm
Plurality	U	$d_{ m discr}$	ℓ_1
Plurality	\mathcal{M}	$d_{ m discr}$	ℓ_1
Plurality	S	no name	ℓ_1
Voter replacement rule	С	$d_{ m discr}$	ℓ_1
Kemeny	S	$d_{ m swap}$	ℓ_1
Borda	U	$d_{ m swap}$	ℓ_1
T Connection to MLE framework D Distance rationalization with respect to strong unanimity (S) implies noise model for MLE approach (and the other way round for a natural family of noise models) ← needs some caution!!!			
Simplified Bucklin	\mathcal{M}	$d_{ m sert}$	ℓ_{∞}
Litvak	S	$d_{ m spear}$	ℓ_1

Axiomatic Properties and Distance Rationalizability

Anonymity and neutrality

Derived directly from the distance over prefernece orders and the aggregating norm.

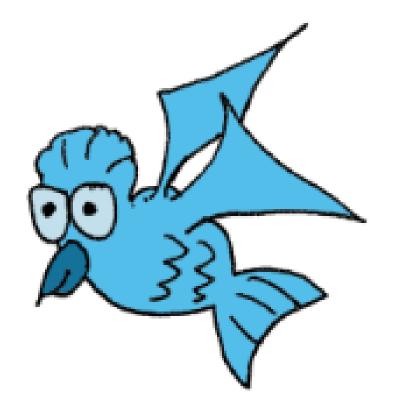
Monotonicity

Not completely trivial!

Possible to derive monotonicity of a votewise DR rule from the properties of the distance and the norm

Rank monotonicity of a distance: A vote where b is ahead of c is closer to a vote that ranks b on top than to one that ranks c on top

Continuity, Homogeneity, Consistency


Continuity – add enough elections with a given winner and the result will be as they want → satisfied by votewise DR rules for S and U

Homogeneity – clone each voter the same number of times, and the result does not change \rightarrow satisfied by votewise DR for S and U under I₁, and for almost all votewise DR for I_∞

Consistency – satisfied by scoring rules → DR-based characterization of scoring rules

Conclusions


- Distance rationalizability
 - Very general framework
 - Generates new rules easily
 - Provides insights into new rules

- Possible extensions?
 - Other objects to aggregate (tournaments? Partial orders?)
 - Theoretical justification for consensus notions?

Thanks!

