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Motivation: Internet of Things

What “Things?”

• smart meters,

• smart appliances (air conditioning),

• self-driving cars,

Why Internet? Real-time communication between Things.



Why communication between Things?

Coordinate agents and avoid congestion:

• everyone turning on AC at the same time,

• everyone driving at the same time,

• everyone downloading at the same time.

• everyone charging their electric car at the same time.

This boils down to a resource allocation problem.



What do the operator and agents want?

To allocate optimally, a central operator needs:

• know the temperature in your house, and what temperature
you would like;

• to tell each agent what to do (e.g., controlling your AC).

What do agents want?

• Privacy: I don’t want a central operator or my neighbours to
know how badly I need to turn on my AC!



Can we make everyone happy?

Is it possible to satisfy these objectives?

• Allocate optimally,

• Keep privacy.

Yes, and more:

• Agents do not send anything.

• Agents do not receive any signal from other agents.

• Central operator sends (broadcasts) the same signal to
everyone.



What’s the catch?

Agents have to behave nicely:

• Follow a predefined policy,

• Listen to the signal from the central operator.



Mathematical formulation

• N agents.

• An amount C of resource (e.g., power).

• Each fi is private to agent i . Not known to anybody else!



Mathematical formulation

• N agents.

• An amount C of resource (e.g., power).

• Each fi is private to agent i . Not known to anybody else!

Problem

Optimize social utility (sum over all agents).

Maximize
N∑

i=1

fi (xi )

subject to
N∑

i=1

xi = C , xi ≥ 0.



Optimization is easy, is it not?

Maximize
N∑
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xi = C , xi ≥ 0.

If the fi are strictly concave, this is an easy optimization problem

The conditions for optimality are simply, that in the optimum x∗

satisfies for all i and j :

f ′i (x
∗
i ) = f ′j

(
x∗j
)
.



Optimization is easy, is it not?

Maximize
N∑

i=1

fi (xi )

subject to
N∑

i=1

xi = C , xi ≥ 0.

If the fi are strictly concave, this is an easy optimization problem,
if we can use the full force of optimization theory.

The conditions for optimality are simply, that in the optimum x∗

satisfies for all i and j :

f ′i (x
∗
i ) = f ′j

(
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)
.



Solving optimization problem by AIMD

Define:

• xi (t): amount of “demand” by agent i at time t,

• x̄i (t): average over the past, i.e.

x̄i (t) =
1

t + 1

t∑

s=0

xi (s) .



Solving optimization problem by AIMD

Initialize: α and β are fixed.

At time t = 1, 2, . . .:

• Each agent receives one-bit warning signal 1[Wt<C ], where
Wt =

∑
j xj(t). This is usally from central operator, but can

sometimes be computed locally (e.g., measuring pollution to
estimate power demand).

• Each agent i computes λi (x̄i (t)) (knowing only fi , details
later).

• Each agent i updates its own demand in an recursive fashion:

xi (t + 1) =
{
xi (t) + α

}
1[Wt<C ] +

{
Bi (t)xi (t)

}
1[Wt≥C ],

Bi (t) = 1 with probability 1− λi (x̄i (t))

= β with probability λi (x̄i (t)).

This means back-off with probability λi (x̄i (t)).



Good news

• To compute the warning signals, you only need to observe the
sum

∑
j xj(t).

• A simpler version of AIMD is already used in TCP.

• Each agent i only needs to know its own fi .

Theorem
Suppose that {fi} are strictly concave. We can design the
probability functions λi so that for every agent i :

xi (t) → x∗i , as t → ∞.



How do we update λi?

For fixed probabilities λi , a well-known property of AIMD
algorithm is:

Theorem

lim
t→∞

xi (t) =
α

λi (1− β)
, almost surely.

Leap of Faith

Set λi as follows for all i :

λi (z) :=
f ′i (z)

z



The Magic Formula

λi (xi (t)) :=
f ′i (xi (t))

xi (t)
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lim
t→∞
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α
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x̃i
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;

or equivalently

f ′i (x̃i ) =
α

1− β
, for all i .



The Magic Formula

λi (xi (t)) :=
f ′i (xi (t))

xi (t)

If the algorithm converges (x(t) → x̃) , then for all i :

lim
t→∞

λi (xi (t)) =
f ′i (x̃i )

x̃i

(by the property of AIMD) lim
t→∞

xi (t) = x̃i =
α

f ′i (x̃i )
x̃i

(1− β)
;

or equivalently

f ′i (x̃i ) =
α

1− β
, for all i .

Remains to show convergence indeed occurs . . .



Optimization with infinite averaging

x̄i (t) =
1

t+1

∑t
s=0 xi (s)
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Optimization with bounded window size

x̄i (t) =
1
τ

∑t
s=t−τ xi (s)
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Next Steps

• Other versions with adaptive αi and βi on top of λi .

• Making it robust: no agent has any incentive to deviate from
the AIMD policy.

Paper:

http://arxiv.org/abs/1404.5064


