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Resource allocation

Example

7 7
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Undirected graph with
parallel edges
self loops
nonuniform weights

Goal: Orient the edges so that we
maximize the minimum sum of
incoming weights.

vertex = agent
edge = object
sum of incoming weights = utility
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Resource allocation

Model

What kind of resource allocation
problem do we deal with?

indivisible and non-shareable goods
centralized
no payments
non-strategic agents

Formal model:
a finite set of objects
O = {o1, . . . , om}

a finite set of agents A = {1, . . . , n}

each agent i ∈ A has utility function
ui : 2O → Q
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Resource allocation

Representations of utility functions

Problem: Utility functions have an exponential-size domain.

Each ui is represented . . .

in the bundle form by
a list of pairs (S, ui (S)) with ui (S) 6= 0,

in the k-additive form by
coefficients αS

i for each bundle S ⊆ O with ‖S‖ ≤ k such that

ui (T ) =
∑

S⊆T ,‖S‖≤k

αS
i .

Other representations are e.g., straight-line programs, bidding languages,
weighted goals.
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Resource allocation

Restrictions on utility functions

Usually we have assumptions such as. . .
no externalities
monotonicity (free disposal)

S ⊆ T =⇒ u(S) ≤ u(T ),

normalization
u(∅) = 0.

We may put additional restrictions on utility functions:
additivity

u(S) =
∑
o∈S

u({o})

submodularity
u(S ∪ T ) + u(S ∩ T ) ≤ u(S) + u(T )

subadditivity
u(S ∪ T ) ≤ u(S) + u(T )
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Resource allocation

Solutions

A solution in this model is a partition of O into n disjoint subsets.

Question: How to assess the quality of a solution?

We can ask questions such as
Which (fairness) properties are satisfied?
What is the social welfare?
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Resource allocation

Social welfare

We can aggregate utility values with a collective utility function.

Utilitarian social welfare
swu(π) =

∑
i∈A

ui (π)

Egalitarian (Rawlsian) social welfare

swe(π) = min
i∈A

ui (π)

Nash product
swN(π) =

∏
i∈A

ui (π)

We also consider the lexicographic minimum (leximin) over (ui(π))i∈A.

There are also approaches using inequality indices, e.g., Gini index.
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Resource allocation

Complexity

How hard is it to compute allocations of optimal social welfare?

Bundle form:
Utilitarian, egalitarian, and Nash product social welfare optimization are
hard.

k-additive form, k ≥ 1:
Utilitarian (except for k = 1), egalitarian, and Nash product social welfare
optimization are hard.

But for m = n it is easy.
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Approximation

What to relax?

Since most social welfare optimization problems are hard, we have to relax our
requirements.

Approximate notions of properties
Suboptimal social welfare
Restricted model of computation (Part two)

12 / 35
Approximability of optimal social welfare

N



Approximation

What to relax?

Since most social welfare optimization problems are hard, we have to relax our
requirements.

Approximate notions of properties

Suboptimal social welfare
Restricted model of computation (Part two)

12 / 35
Approximability of optimal social welfare

N



Approximation

What to relax?

Since most social welfare optimization problems are hard, we have to relax our
requirements.

Approximate notions of properties
Suboptimal social welfare

Restricted model of computation (Part two)

12 / 35
Approximability of optimal social welfare

N



Approximation

What to relax?

Since most social welfare optimization problems are hard, we have to relax our
requirements.

Approximate notions of properties
Suboptimal social welfare
Restricted model of computation (Part two)

12 / 35
Approximability of optimal social welfare

N



Approximating social welfare

Utilitarian social welfare

Bundle form Approximability Reference

general NP-hard in factor mε−1/2 [LOS99]

submodular 1− (1/e) [FGMS06],[CCPV07],[Von08]
NP-hard in factor 1− (1/e) + ε [KLMM08]

subadditive hard in factor 1/m1/4 [DS06]
1/m1/2 [DNS10]
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Approximating social welfare

Egalitarian social welfare

Bundle form Approximability Reference

general NP-hard in any factor [NRR13]

submodular 1/(m − n + 1) [Gol05]

1/(m1/2n1/4 log m log3/2 n) [GHIM09]

subadditive 1/(2n − 1) [KP07]

k-additive form Approximability Reference

1-additive NP-hard in factor 1/2 + ε [BD05]
1/mε, ε ∈ O(1) [CCK09]

1-additive, Santa Claus O(1) [Fei08],[HSS11]

k-additive, k ≥ 2 NP-hard in any factor [NRR13]
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Approximating social welfare

Nash product

Restriction Approximability Reference

Bundle form NP-hard in any factor [NRR13]

1-additive 1/(m − n + 1)n [NR13]

2-additive NP-hard in factor 21/22 + ε [NRR13]

k-additive, k ≥ 3 NP-hard in any factor [NRR13]
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Part Two
Ordinal preferences & Restricted model
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Ordinal preferences

Our approach

Problem: What to do if no clear numerical scale (e.g money) is involved...?

Idea: Cardinalize ordinal preferences with the help of scoring vectors.
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Scoring allocation rules

About scoring vectors

Here we take inspiration from voting theory.

We assume that:

1 Ranking: Each agent i has a ranking �i over O (ex: o6 � o1 � o4 � o5 � o2 � o3)
2 Scoring: We have a common scoring vector s = (s1, . . . , sm) (with s1 ≥ · · · ≥ sm)

mapping each rank to a utility.
3 Additivity: These utilities are additive.
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Scoring allocation rules

Example

Example
5 objects, 3 agents. . .

1 : o1 � o2 � o3 � o4 � o5

2 : o4 � o2 � o5 � o1 � o3

3 : o1 � o3 � o5 � o4 � o2

Let’s consider allocation π = 〈{o1}, {o4, o2}, {o3, o5}〉.

Borda: u1(π) = 5; u2(π)=5 + 4=9; u3(π)=4 + 3=7.
Lexicographic: u1(π) = 16; u2(π) = 24; u3(π) = 12.
s-QI: u1(π) = 1 + s1/M; u2(π) = 2 + s1+s2/M; u3(π) = 2 + s2+s3/M.
2-approval: u1(π) = 1; u2(π) = 2; u3(π) = 1.
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Scoring allocation rules

Scoring allocation rules

Back to our resource allocation problem...
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Back to our resource allocation problem...

Interpretation:
Borda SF
Lexicographic SF
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Maximize:
Interpretation:

∑
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Scoring allocation rules

How to interpret scores?

Scores are not necessarily agents’ utilities.

Question: What are we actually optimizing in the end?

Two interpretations of scores:
1 Compromise between all agents (domain knowledge, learned, . . . )
2 Perception of the center
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Scoring allocation rules

Properties

1 Separability: Violated by almost all our rules
2 Monotonicity: Satisfied by all our rules
3 Global monotonicity: Violated by almost all our rules

with strictly decreasing scoring vector
4 Pos. object monotonicity: Satisfied by + for n = 2, but violated

for n ≥ 3 and strictly decreasing scoring vector

Baumeister, D., Bouveret, S., Lang, J., Nguyen, N., Nguyen, T., and Rothe, J. (2014).
Scoring rules for the allocation of indivisible goods.
In Proceedings of ECAI’14, pages 75–80. IOS Press.
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Scoring allocation rules

Complexity

What is the precise complexity of these allocation rules?

For each pair (scoring vector, social criterion), what is the complexity of...
1 Optimal Allocation Value (OAV): is it possible to find an allocation of social welfare
≥ K?

2 Optimal Allocation (OA): does π belong to the set of optimal allocations?
3 Find Optimal Allocation (FOA): find an optimal allocation.
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Scoring allocation rules

Complexity

For
∑

i ui(π) (classical utilitarianism), everything is polynomial!
Idea: give each item to the agent that ranks it the best.

For mini ui(π) (egalitarianism):

Bad news: hard (NP-complete, coNP-complete, NP-hard for OAV, OA, FOA resp.)
for Borda, lexicographic and QI scoring vectors.

(all by reduction from [X3C])
Good news: easy (polynomial)

if the number of objects is fixed (obvious);
if the number of agents is fixed (dynamic programming);
for k-approval ("known" problem).
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(all by reduction from [X3C])
Good news: easy (polynomial)

if the number of objects is fixed (obvious);
if the number of agents is fixed (dynamic programming);
for k-approval ("known" problem).

Most results for min carry over to leximin.
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Scoring allocation rules

Approximation

Most cases are hard...
Question: Is it possible to efficiently compute good (but potentially suboptimal)
allocations?

Our approach: Instead of giving general approximation results, we:
focus on a simple allocation protocol [Bouveret and Lang, 2011];
and try to analyze how good the allocations it gives are.

Bouveret, S. and Lang, J. (2011).
A general elicitation-free protocol for allocating indivisible goods.
In Proceedings of IJCAI’11, pages 73–78. IJCAI.
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Scoring allocation rules

An elicitation-free protocol...

Ask the agents to pick in turn their most preferred object among the remaining
ones, according to some predefined sequence σ.

Example
3 agents 1, 2, 3 / 6 objects / sequence 123321 → 1 chooses first (and takes
her preferred object), then 2, then 3, then 3 again. . .

Arguably a very simple (and natural) protocol! No elicitation required!

Here we focus on regular sequences σ of the kind (1 . . . n)∗ and Borda.
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Scoring allocation rules

Price of elicitation-freeness

Arguably a very simple (and natural) protocol. . .

. . . but obviously suboptimal!

Question: What is the loss in social welfare we incur by using such a simple
protocol instead of computing the optimal allocation?

Multiplicative Price of Elicitation-Freeness:
worst case ratio sw opt/sw(σ), for a sequence σ

Additive Price of Elicitation-Freeness:
worst case difference sw opt − sw(σ), for a sequence σ
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Lower bounds for MPEF

Experimental results

For classical utilitarianism (
∑

i ui(π)):
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Lower bounds for MPEF

Classical utilitarianism

For m = kn objects,

MPEF+ ≥ 1 +
mn −m − n2 + n

m2 + mn

Why is this true?

1 : o6 � o1 � o2 � o3 � o4 � o5

2 : o5 � o6 � o1 � o2 � o3 � o4

3 : o4 � o5 � o6 � o1 � o2 � o3
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Upper bounds for MPEF

Classical utilitarianism

For m = kn objects,
MPEF+ ≤ 2− m − n

mn + n

Why is this true?

If at a time step agent j gets object gni+j we learn
a lower bound on agent j ’s value for this object
an upper bound on all agents’ values for this object

Corollary:
If n = 2 and m = 2k ,

1 +
m − 2

m(m + 2) ≤ MPEF+ ≤
3
2 +

3
2m + 2
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Upper bounds for MPEF

Egalitarianism

For m = kn objects,
MPEFmin ≤

2mn −m + n
mn + 2n − n2

Why is this true?

Upper bound MPEFmin using best and worst case profile

Corollary:
If n = 2 and m = 2k ,

MPEFmin ≤
3
2 +

5
m + 4
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APEF

Experimental results

For classical utilitarianism (
∑

i ui(π)):
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APEF

Formal bounds

For m = kn objects,

(n − 1)(m − n)
2 ≤ APEF+ ≤

(m − n)(mn −m + n2 + n)
2n

APEFmin ≤
m2n −mn −m2 + mn2

2n2
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Future Work

Closing gaps (upper and lower bounds)
Relationships (rank weighted utilitarianism, inequality indices)
Exact characterizations, manipulation (scoring allocation rules)
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Discussion

On finding rankings with approximately optimal Kemeny score:
An approximation algorithm for a voting rule is, in effect, a different

voting rule; and in real-world elections, voters may feel deceived if a
different voting rule is used than the one that was promised to them.

- Conitzer, Davenport, and Kalagnanam (2006)

Does this argument hold in the resource allocation setting as well?
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