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Abstract
The aim of this paper is to present many computational aspects related to polynomial spaces of

w-degree. We obtained algorithms for computing the dimension of homogeneous spaces ofw-degree
n and the exponents of the monomial basis of these spaces. These elements are very important for
using these spaces as interpolation spaces. We discuss aspects regarding the complexity of these
algorithms and implementation details.

1 Introduction
Support Vector Machines (SVMs) represent a class of neural networks, introduced by Vapnik ([?]). We
will make a brief presentation of SVMs for binary classification in section ??. We limit our discussion to
the binary case. There are many methods to make generalizations for several classes. In the recent years,
SVMs have become a very popular tool for machine learning tasks and have been successfully applied
in classification, regression and novelty detection. Many applications have been done in various fields:
particle identification, face identification, text categorization, bioinformatics, database marketing.

Generally, the task of classification is to find a rule, which based on external observations assign an
object to one of several classes. A classification task supposes the existence of training and testing data
given in the form of data instances. Each instance in the training set contains one target value, named
class label and several attributes named features. The goal of SVM is to produce a model which predicts
target value of data instances in the testing set which are given only the attributes. SVM solutions are
characterized by a convex optimization problem. If the data is separable we obtain an optimal separating
hyperplane with a maximal margin ([?]). In order to avoid the difficulties for the non separable data the
idea of kernel substitution is used. The kernel methods, transform data into a feature space F , that usually
has a huge dimension ([?]). With a suitable choice of kernel the data can become separable in feature
space despite being non-separable by a hyperplane in the original input space. The basic properties of a
kernel function are derived from Mercer’s theorem ([?]). Under certain conditions, kernel functions can
be interpreted as representing the inner product of data objects implicitly mapped into a nonlinear feature
space. The ”kernel trick” is to calculate the inner product in the feature space without knowing explicit
the mapping function.

2 Support Vector Machines and kernels
An SVM algorithm can solve the problem of binary or multiclass classification. Many real-life data

sets involve multiclass classification. We consider in this section only the problem of binary classification



be cause there are many known methods to generalize the binary classifier to an n - class classifier ([?],
[?]).

Let be given the data points xi ∈ Rd, i ∈ {1, . . . ,m} and their labels yi ∈ {−1, 1}. We look for
a function f which associates to each input data x its correct label y = f(x). This function is named
decision function and represents a hyperplane which divides the input data into two regions:

f(x) = sign(〈w, x〉+ b), (1)

where w =
∑m

i=1 αixi.If the data set is separable then the conditions for classification without training
error are yi(〈w, xi〉+ b) > 0. To maximize the margin the task is

min ≤
(
1

2
‖ w ‖2

)
,

subject to the constraints
yi(〈w, xi〉+ b) ≥ 0, ∀i ∈ {1, . . . , n}

The Wolfe dual problem requires the maximization with respect to αi, of the function

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj〈xi, xj〉 (2)

subject to the constraints

αi ≥ 0,
m∑
i=1

αiyi = 0, (3)

with αi Lagrange multipliers (hence αi ≥ 0).

3 Main results. Our model
We want to build and analyze a multiple kernel starting from the simple polynomial kernel and having

2 parameters, the degree d and the coefficient r.

3.1 Representation of the multiple kernel

Our chromosome is composed from 78 genes: 2 genes for each operation, 2 genes for the kernel’s type,
4 genes for the degree parameter di, 12 genes for rj . If the associated kernel is not polynomial, the last
16 genes are used to represent the real value of parameter γi, in place of di and ri.
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