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Algebraic model for the CPU arithmetic unit behaviour
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Abstract

Modern computersystems are regarded as a sum of interconnected and communicating resources.
Both the design and the operation of each of these resources, and the global behaviour and perfor-
mance of the entire computer system are equally important. This approach points to a component-
based analysis and development of such systems, each component being able to be specified and
verified as a specific agent. Formal methods represent a reliable solution for systematically and
exhaustively studying the specific agents involved in describing computer components behaviour,
providing the appropriate tools for both the agents’ environment modeling and the target agents’
properties formal verification.

An algebraic formal framework for modelling the interconnecting processes involved in the
agents’ description is advanced here using the SCCS process algebra and its corresponding auto-
matic verification benchmark, CWB-NC. In this paper we add a new component model to our formal
framework by considering the CPU arithmetic unit. The original approach followed in the present
paper consists in developing an SCCS based algebraic model for the arithmetic unit behaviour. The
authors’ contributions are both the definitions of the SCCS agents for modelling the target behav-
iour and the proofs for the bisimulation equivalence between those agents. Adding these results to
other similar results obtained in our framework, we have important prerequisites in the future work
for modelling the behaviour of the entire ALU consisting of arithmetic unit, logic unit and specific
control circuits.

1 Introduction

Computer architecture provides a structured and organized view upon the computer system hardware
components. With respect to the final users’ demands, better solutions for designing and assembling
hardware components are investigated. These solutions usually target the increasing system scalability,
the components’ accurate operation or reducing components’ assembling costs.

Modern computer systems are regarded as a sum of interconnected and communicating resources.
Both the design and the operation of each of these resources, and the global behaviour and performance
of the entire computer system are equally important. This approach points to a component-based analysis
and development of such systems, each component being able to be specified and verified as a specific
agent.

Formal methods represent a reliable solution for systematically and exhaustively studying the specific
agents involved in describing computer components behaviour, providing the appropriate tools for both
the agents’ environment modeling and the target agents’ properties formal verification.
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Considering the computer architecture description at the digital logic level, the agent-based approach
is applied inthis paper to cover both the digital logic circuits design and verification. An algebraic formal
framework for modelling the interconnecting processes involved in the agents’ description is advanced
here using the SCCS process algebra [3] and its corresponding automatic verification benchmark, CWB-
NC [22]. Using the operational semantics of the given SCCS algebra, we may evaluate and formal verify
how the proposed implementation-based model relates to the intended specification-based definitions of
the given components behaviour. As an extra mark for our model correctness, an automatic verification
of the target agents’ equivalence is applied using the CWB-NC tool.

This formal framework represents our research interest for obtaining an algebraic model for the entire
computer operation based on the interconnected hardware components. Our main results have already
aimed to a set of hardware components, as follows: counter registers [11], memory component [14],
[15], logic part of the processor arithmetic logic unit [19].

In this paper we add a new component model to our formal framework by considering the other main
part of the processor ALU, namely the arithmetic unit. The computer’s Arithmetic-Logic Unit (ALU)
is a Combinational Logic Circuit (CLC), a part of the execution unit as a core component of all Central
Processing Units (CPUs) of modern computers. A concrete structure of the ALU is considered in order
to achieve the most addressed arithmetic operations. The original approach followed in the present paper
consists in developing an SCCS based algebraic model for the arithmetic unit (AU) behaviour. The
authors’ contributions are both the definitions of the SCCS agents for modelling the AU behaviour and
the proofs for the bisimulation equivalence between those agents. Jointly these results and the results
from [19] will be important prerequisites in our future work for modelling the behaviour of the entire
ALU consisting of arithmetic unit, logic unit and specific control circuits.

2 Preliminaries

This section considerations are following our presentations of the same subjects made in [19].

2.1 Arithmetic Logic Unit
The part of the computer that performs the bulk of data-processing operations is called the central
processing unit and is referred to as the CPU for central processing unit [4], [9]. The CPU is made
up of three major parts, as follows: control, register set and arithmetic logic unit (ALU). The register set
stores intermediate data used during the execution of the instructions. The arithmetic logic unit performs
the required microoperations for executing the instructions. The control unit supervises the transfer of
information among the registers and instructs the ALU as to which operation to perform.

Instead of heaving individual registers performing the microoperations directly, computer systems
employ a number of storage registers connected to a common operational unit called an arithmetic logic
unit, abbreviated ALU [4], [9]. To perform a microoperation, the content of specified registers are placed
in the inputs of the common ALU. The ALU performs an operation and the result of the operation is
then transferred to a destination register. The ALU is a combinational circuit so that the entire register
transfer operation from the source registers through the ALU and into the destination register can be
performed during one clock pulse period. The shift microoperations are often performed in a separate
unit, but sometimes the shift unit is made part of the overall ALU.

For the target of this paper we consider a specific structure of the computer’s ALU represented in
Figure 1, adapted from [6].

This diagram is divided into three sections: Logic unit, Arithmetic unit and Decoder. The inputs
area, b, S0 andS1. Thea andb inputs are used as the regular, 1-bit inputs for all operations. TheS

inputs operate as enable lines since for each of the four possible combinations ofS values, only one of
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Figure 1: 1-bit UAL

the decoder outputsD0, D1, D2, D3 will be ”turned on”. Thus, the function of the Decoder subpart is
to figure out which of the four operations will be done:AND, OR, NOT or ADD. On the right side
of the circuit, all of the outputs areORed together. However, only one of the four inputs of theOR gate
could potentially be an 1 due to the enable lines.

For practical operations an 8-bit ALU is more convenient. For this, the previous diagram needs to be
repeated 8 times, eventually considering also the specific lines for managing the carry bit.

In the next sections we will consider in details the arithmetic part of this structure as a collection of
two boolean operations,aXORb andaANDb, we will define an algebraic model for this unit behaviour
and we will prove its correctness.

2.2 Process algebra SCCS
The process algebra SCCS, namelySynchronous Calculus of Communicating Systems[1] is derived from
CCS, especially for achieving the synchronous interaction in the framework of modelling the concurrent
communicating processes. Both in CCS and in SCCS, processes are built from a set of atomic actionsA.
Denoting the set of labels for these actions byΛ, a CCS action is either (1) anameor an input ona ∈ Λ
denoted bya, (2) aconameor an output ona ∈ Λ denoted bya or˜a or (3) an internal ona ∈ Λ denoted
by τ . In SCCS thenamestogether with theconamesare called theparticulate actions, while anaction
α ∈ Λ∗ can be expressed uniquely (up to order) as a finite productaz1

1 az2

2 ... (with zi 6= 0) of powers of
names. Note the usual convention thata−n = an and that the action1 in SCCS isthe actionτ from CCS
and it is identified in SCCS with the empty product. An SCCSprocessP is defined with the syntax:

P ::=nil termination
| α:P prefixing
| P+P external choice
| P× P product, synchronous composition
| P\L restriction,L ⊆ A ∪ A

| P[f] relabelling with themorphismf : A∪A → A∪A

In this grammar, the restriction is inherited from CCS. There is also an SCCS specific restriction
denoted by the↾ operator and structural related with the CCS operator by P\L= P ↾ E whereE =
(A-L)* is the submonoid ofA generated by the set differenceA-L. By definition, the P↾ E agent is
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forced to execute only the actions from the setE as the externalactions and the agent P\Lis forced to
not execute the actions from the setL, except as the internal actions.

The operational semantics for SCCS is given via inference rules that define the transition available
to SCSS processes. Combining the product and the restriction, SCCS calculus defines the synchronous
interaction as a multi-way synchronization among processes.

3 The model for the arithmetic unit behaviour
As we have already mentioned in Preliminaries, we consider the arithmetic part of the arithmetic logic
unit represented in the previous Figure 1. For the diagrammatic representation of this part we use in
the next Figure 2 our own software LCD [13] developed for representing the digital-logic circuits and
simulating their behaviour.

Figure 2: 1-bit UAL - Arithmetic part

3.1 The algebraic model
As the main results of this paper, we define in this section the algebraic model for the AU behaviour
based on three kinds of agents: (1) the basic agents - corresponding to the main logic gatesAND and
XOR, (2) the enabling agents - corresponding to the connection of the AU with the decoder and (3) the
arithmetic agents - corresponding to the twoAND gates level.

(1) The basic agents are: ANDab and XORab. Their definitions are:

ANDab = AND[ΦANDab]

based on the agent
AND =

∑
x,y∈{0,1}

(in1xin2youtz : nil)

with the Boolean evaluationz = x AND y and the morphismΦANDab defined by the relabelling pairs
in1 7→ upa, in2 7→ upb andout 7→ ANDabout;

XORab= OR[ΦXORab]

based on the agent
XOR =

∑
x,y∈{0,1}

(in1xin2youtz : nil)
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with z = x XOR y and the morphismΦXORab defined by the relabelling pairsin1 7→ downa, in2 7→
downb andout 7→ XORabout.

(2) The enabling agents are: EADD and ECARRY. Their definitions are:

EADD = AND[ΦANDEADD]

with ΦANDEADD defined byin1 7→ XORabout, in2 7→ downD3 andout 7→ ADDout;

ECARRY = AND[ΦANDECARRY ]

with ΦANDECARRY defined byin1 7→ ANDabout, in2 7→ upD3 andout 7→ CARRY out.
(3) The arithmetic agents are:

ArithmADD = (XORab× EADD)\{XORabout}

and
ArithmCARRY = (ANDab× ECARRY)\{ANDabout}

We also need some agents for modelling the distribution of the electric signal on the circuit wires.
These agents depend on the number of forked lines in a circuit node. Hence, for the fork of the signal
into two lines the agent is

NODE2=
∑

x∈{0,1}

(inxupxdownx : nil).

We needthree appropriate rellabeled agents based on the agent NODE2, as follows:

NODE2 a = NODE2[Φ2a] (1)

with Φ2a defined byin 7→ a, up 7→ upa anddown 7→ downa;

NODE2 b = NODE2[Φ2b] (2)

with Φ2b defined byin 7→ b, up 7→ upb anddown 7→ downb;

NODE2 D3 = NODE2[Φ2D3] (3)

with Φ2D3 defined byin 7→ D3, up 7→ upD3 anddown 7→ downD3.
Using the above agents, we are now ready to define two agents for modelling the AU behaviour:

a low-level specification agent EArithm based on the behaviour of the arithmetic unit and a high-level
specification agent SpecEArithm based on the definition structure of the arithmetic unit circuit.

Hence, the implementation of the arithmetic part of the ALU based on the behaviour of the circuit is
given by the agent:

EArithm = (4)

= (ArithmADD × ArithmCARRY× NODE2 a× NODE2 b× NODE2 D3)\

\CommEArithm

where the setof communicating actions is

CommEArithm = {upa, downa, upb, downb, upD3, downD3}.
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The specification of the arithmetic part of the ALU based on the definition of the circuit represented
in Figure2 is given by the agent:

SpecEArithm=
∑

x,y,m∈{0,1}

(axbyD3mADDoutsCARRY outt : nil) (5)

where theBoolean evaluations are:

s =

{
0, if m = 0
x XOR y, if m = 1

andt =

{
0, if m = 0
x AND y, if m = 1

Note that the binary numberts(2) is exactly the binary sumx +2 y.

3.2 The formal proof of the agents bisimilarity
In this section we will prove that the two previous specification agents for the AU are bisimulation
equivalent, the appropriate equivalence in the theory of concurrent communicating processes. This result
is very important for the target of this paper since it means that the behaviour of the AU modeled by the
implementation agent EArithm is correct with respect to the AU definition modeled by the specification
agent SpecEArithm.

Proposition 1 The previous agents SpecEArithm and EArithm are bisimulation equivalent.

Proof: The bisimulation relation ’∼’ is a congruence over the classP of agents [3].
We consider the low-level specification for the arithmetic part of the ALU given by the previous

agent EArithm (4):

EArithm =

= (ArithmADD × ArithmCARRY× NODE2 a× NODE2 b× NODE2 D3)\

\CommEArithm

where the setof communicating actions is

CommEArithm = {upa, downa, upb, downb, upD3, downD3}.

We evaluate this agent in few steps corresponding to the inside agents.

ArithmADD = (XORab× EADD)\{XORabout} =

= (
∑

x,y∈{0,1}

(downaxdownbyXORaboutz : nil) ×
∑

z,m∈{0,1}

(XORaboutzdownD3mADDouts : nil))\

\ {XORabout}

wherez = x XOR y ands = z AND m.
After we apply the product (SCCS synchronous composition) and the restriction on the internal

communicating actionXORabout, the agent expression is:

ArithmADD =
∑

x,y,m∈{0,1}

(downaxdownbydownD3mADDouts : nil)

Following the logic expressionss = z AND m andz = x XOR y we haves = z AND m = (x XOR

y) AND m, meanings =

{
0, if m = 0
x XOR y, if m = 1

.
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Analogously, the expression for the ArithmCARRY agent is:

ArithmCARRY = (ANDab× ECARRY)\{ANDabout} =

= (
∑

x,y∈{0,1}

(upaxupbyANDaboutz : nil) ×
∑

z,m∈{0,1}

(ANDaboutzupD3mCARRY outt : nil))\

\ {ANDabout}

wherez = x AND y andt = z AND m.
After we apply the product (SCCS synchronous composition) and the restriction on the internal

communicating actionANDabout, the agent expression is:

ArithmCARRY =
∑

x,y,m∈{0,1}

(upaxupbyupD3mCARRY outt : nil)

Following the logic expressionst = z AND m andz = x AND y we havet = z AND m = (x AND

y) AND m, meaningt =

{
0, if m = 0
x AND y, if m = 1

.

Following the previous definitions (1), (2) and (3) of the corresponding agents NODE2a, NODE2b
and NODE2D3, we have

NODE2 a =
∑

x∈{0,1}

(axupaxdownax : nil)

NODE2 b =
∑

y∈{0,1}

(byupbydownby : nil)

NODE2 D3 =
∑

m∈{0,1}

(D3mupD3mdownD3m : nil)

Considering allthe previous agents expressions and the set of the internal, communicating actions
CommEArithm = {upa, downa, upb, downb, upD3, downD3}, we conclude that:

EArithm =

= (ArithmADD × ArithmCARRY× NODE2 a× NODE2 b× NODE2 D3)\CommEArithm =

= (
∑

x,y,m∈{0,1}

(downaxdownbydownD3mADDouts : nil) ×

×
∑

x,y,m∈{0,1}

(upaxupbyupD3mCARRY outt : nil) ×

×
∑

x∈{0,1}

(axupaxdownax : nil) ×
∑

y∈{0,1}

(byupbydownby : nil) ×

×
∑

m∈{0,1}

(D3mupD3mdownD3m : nil))\{upa, downa, upb, downb, upD3, downD3} =

=
∑

x,y,m∈{0,1}

(axbyD3mADDoutsCARRY outt : nil)

with thelogic evaluations:s =

{
0, if m = 0
x XOR y, if m = 1

andt =

{
0, if m = 0
x AND y, if m = 1

.
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If you compare this final expression for the low-level specification agent EArithm with thedefinition
of the high-level specification agent SpecEArithm given in (5) it is obvious that these two agents represent
the same circuit behaviour, meaning they are bisimulation equivalent, as required. ⊓⊔

For m = 1, the final expressions fors andt are validating the name of the part we are discussing
about, namely arithmetic unit. This is because the final logic expressions fors and t are modelling
the two specific outputs of an half adder, respectively:s represents the sum of the two input bits andt

represents the carry bit, as follows:

x y x +2 y t s

0 0 00(2) 0 0
0 1 01(2) 0 1
1 0 01(2) 0 1
1 1 10(2) 1 0

This result ofbisimilarity shows that the behaviour of the AU follows the definition of the cor-
responding arithmetic circuit and, on the other hand, it is a guarantee of using these agents in other
complex models.

3.3 The automatic verification of the agents bisimilarity
For the implementation-specification pair of agents EArithm-SpecEArithm, we have used the CWB-NC
platform [22] for verifying the appropriate agents bisimilarity. The corresponding CWB-NC answer for
this test is TRUE and the specific result is pointed in Figure 3:

Figure 3: Automatic verification with CWB-NC

This CWB-NC answerauthenticates the theoretical result proved above using the SCCS operational
semantics. It is an important benefit of our work to have the implementation-specification pair of bisim-
ilar agents, but, unfortunately, the execution time achieved here is not convenient. It is one of our future
work targets to improve this time.

Using the CWB-NC is still a reliable approach, following the research interest revealed by the con-
sistent publications like [7] or [5] relating to the CWB-NC, even in connection with CCS, SCCS and
other modelling and verification tools.

4 Conclusions
It is our general target to obtain an algebraic-based formal framework for modelling and verification
the computer system behaviour. This is following a multi-agent approach, each agent individually rep-
resenting a specific computer hardware component. Out of our overall interests, both the specification
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and implementation modelling levels, and verification of the CPU arithmetic unit behaviour havebeen
considered in this paper.

For the given AU structure, we have defined appropriate SCCS agents based on the definition and on
the behaviour of the AU and we have proved the bisimulation equivalence between the defined agents,
authenticating the correctness of the behaviour with respect to the AU definition. Based on these results,
it follows that we may use these agents in the next steps for modelling other hardware components having
the AU structure as internal part, for example the more complex processing units.

We also consider as future work directions the possibility of moving on from this combination based
on SCCS - CWBNC to another modern opportunities based on functional programming. At this mo-
ment, an interesting and modern solution could follow the Alvis project results for modelling and/or
encoding the embedded, especially rule-based systems. Following [18], [21] and [17], Alvis is develop-
ing in Krakow, Poland starting with 2009. It is based on CCS and XCCS process algebras, it is defined
for the design of concurrent especially real-time systems and it also provides a possibility of a formal
model verification. One of the main Alvis advantages consists in combining a flexible graphical mod-
elling approach for interconnections among agents with a high-level programming language used for the
description of agents’ behaviour. Even if Alvis is based on CCS and XCCS, its internal high-level pro-
gramming language is based on the Haskell syntax instead of algebraic equations. In [21], the functional
programming language Haskell [8] is appreciated as the most natural way of encoding a rule-based sys-
tem into an Alvis model. Moreover, Haskell features like lazy evaluation, pattern matching or high level
functions make it a very attractive proposition for the Alvis interests.

From our point of view, the Alvis project means an opportunity for future work consisting of replac-
ing the equation-based algebraic modelling approach by a Haskell-based functional approach. From the
educational point of view, the Haskell opportunities for our students are already a topic of our interests
[20]. From the scientific point of view, passing to the functional approach is expecting to substantially
improve the CWB-NC execution time obtained here for automatic verification of the agents’ bisimilarity
equivalences.

If Alvis is adding the Haskell facilities over the (X)CCS process algebra characteristics, we also
have the alternative of the CHP library - as a set of Haskell packages for implementing the concur-
rency ideas from Hoare’s CSP [2]. The beginning of Communicating Haskell Processes, namely CHP
research framework is in [10]. Both Alvis and CHP have gathered the research and practical results in
corresponding PhD thesis [12], [16].
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