

Editor DANA SIMIAN

IMAGINATION, CREATIVITY,

DESIGN, DEVELOPMENT

Proceedings of the International Conference

on Applied Informatics

ICDD

May 29th – 31th, 2025

Sibiu, Romania

Lucian Blaga University of Sibiu

Lucian Blaga University of Sibiu, 2025

Editor Dana Simian

All papers in this volume were peer review by two independent reviewers

ISSN-L 2069 – 864X

Associated Editor Laura Florentina Stoica

Proceedings of the International Conference on Applied

Informatics, ICDD

May 29th – 31th, 2025, Sibiu, Romania

Copyright @ 2025 All rights reserved to editors and authors

Preface

 This volume contains refereed papers presented within the International Conference on

Applied Informatics, “Imagination, Creativity, Design, Development“ - ICDD 2025, which

was held between May 29th – 31th, at the Faculty of Sciences, Lucian Blaga University of Sibiu,

Romania.

 The conference is mainly addressed to young researchers from all over the world. The

conference gives the participants the opportunity to discuss and present their research on

informatics and related fields (like computational algebra, numerical calculus, bioinformatics,

etc.). The conference welcomes submissions of original papers on all aspects of informatics

and related fields ranging from new concepts and theoretical developments to advanced

technologies and innovative applications. Specific topics of the conference included but are not

restricted to: Algorithms and data structures, Graph theory and applications, Formal languages

and compilers, Cryptography, Modelling and simulation, Computer programming, Computer

vision, Computer graphics, Game design, Data mining, Distributed computing, Artificial

Intelligence, Service oriented applications, Networking, Grid computing, Mobile operating

systems, Scientific computing, Software engineering, Bioinformatics, Robotics, Computer

Architecture, Evolutionary Computing, Multimedia Systems, Internet Communication and

Technologies, Web Applications, Machine Learning.

 The conference has brought together participants from 4 countries (Bulgaria, Germany,

India, Romania).

 We thank all the participants for their interesting talks and discussions. We also thank

the members of the scientific committee for their help in reviewing the submitted papers and

for their contributions to the scientific success of the conference.

December 2025 Dana Simian

 Conference Chair

Motto:

“There are no limits, only your imagination”

Scientific committee

Kiril Alexiev - Bulgarian Academy of Sciences, Bulgaria

Vsevolod Arnaut - Moldova State University, Republic of Moldova

Galina Atanasova - Angel Kanchev University of Rousse

Alina Barbulescu - Ovidius University of Constanta, Romania

Arndt Balzer - Technical University of Applied Sciences Würzburg-Schweinfurt, Germany

Lasse Berntzen - University of South-Eastern Norway

Peter Braun - Technical University of Applied Sciences Würzburg-Schweinfurt, Germany

Amelia Bucur - Lucian Blaga University of Sibiu, Romania

Stelian Ciurea - Lucian Blaga University of Sibiu, Romania

Nicolae Constantinescu - Lucian Blaga University of Sibiu, Romania

Daniela Danciulescu - University of Craiova, Romania

Lyubomyr Demkiv - Lviv National Polytechnic University and Robotics Lead at SoftServe,

Ukraine

Oleksandr Dorokhov - Kharkiv National University of Economics, Ukraine

Dmytro Dosyn - Institute of Computer Science and Information Technologies, Lviv

Polytechnic National University, Ukraine

George Eleftherakis - The University of Sheffield International Faculty, City College

Thessaloniki, Greece

Michael Emmerich - Leiden Institute of Advanced Computer Science, Leiden University

Calin Enachescu -University of Medicine, Pharmacy, Science and Technology of Targu

Mures, Romania

Ralf Fabian - Lucian Blaga University of Sibiu, Romania

Tobias Fertig - Technical University of Applied Sciences Würzburg-Schweinfurt, Germany

Stefka Fidanova - Bulgarian Academy of Sciences, Bulgaria

Ulrich Fiedler - Bern University of Applied Science, Switzerland

Adrian Florea - Lucian Blaga University of Sibiu, Romania

Teresa Gonçalves - University of Evora, Portugal

Andrina Granić - University of Split, Croatia

Katalina Grigorova - University of Ruse, Bulgaria

Piroska Haller - University of Medicine, Pharmacy, Science and Technology of Targu

Mures, Romania

Daniel Hunyadi - Lucian Blaga University of Sibiu, Romania

Saleema JS - Chris University, Bangalore, India

Milena Lazarova - Technical University of Sofia, Bulgaria

Lixin Liang - Tsinghua University, Beijing, China

Suzana Loskovska - "Ss. Cyril and Methodius" University in Skopje, Republic of

Macedonia

Rossitza S. Marinova - Concordia University of Edmonton, Canada

Gabriela Moise - Petroleum-Gas University of Ploiesti, Romania

G.Jose Moses - Raghu Engineering College Visakhapatnam, Andhra Pradesh, India

Mircea Musan - Lucian Blaga University of Sibiu, Romania

Mircea Iosif Neamtu - Lucian Blaga University of Sibiu, Romania

Elena Simona Nicoară - Petroleum-Gas University of Ploiesti

Grażyna Paliwoda-Pękosz - Cracow University of Economics, Poland

Camelia Pintea - Technical University Cluj-Napoca, Romania

Antoniu Pitic - Lucian Blaga University of Sibiu, Romania

Alina Pitic - Lucian Blaga University of Sibiu, Romania

Cristina Popirlan - University of Craiova, Romania

Anca Ralescu - University of Cincinnati, United States of America

Mohammad Rezai - Sheffield Hallam University, United Kingdom

Cosmin Sabo - Technical University of Cluj-Napoca - North University Center Baia Mare

José Saias - University of Evora, Portugal

Abdel-Badeeh M. Salem - Ain Shams University, Cairo, Egypt

Livia Sangeorzan - Transilvania University of Brasov, Romania

Soraya Sedkaoui - Khemis Miliana University, Algeria

Andreas Siebert - University of Applied Sciences Landshut, Germany

Ioan Silea - Politehnica University of Timișoara

Dana Simian - Lucian Blaga University of Sibiu, Romania

Petrica C. Pop Sitar - Technical University Cluj-Napoca, Romania

Lior Solomovich - Kaye Academic College of Education, Israel

Ansgar Steland - RWTH Aachen University, Germany

Florin Stoica - Lucian Blaga University of Sibiu, Romania

Laura Florentina Stoica - Lucian Blaga University of Sibiu, Romania

Detlef Streitferdt - Ilmenau University of Technology, Software Architectures and Product

Lines Group, Germany

Grażyna Suchacka - University of Opole, Poland

Jolanta Tańcula - University of Opole, Poland

Milan Tuba - Trinity University, United States of America; Singidunum University of

Belgrade, Serbia

Eva Tuba - Trinity University, United States of America; Singidunum University of

Belgrade, Serbia

Oana Țicleanu - Lucian Blaga University of Sibiu, Romania

Anca Vasilescu - Transilvania University of Brasov, Romania

Dana Vasiloaica - Atlantic Technological University, Ireland

Sofia Visa - The College of Wooster, United States of America

Contents

Autonomous Navigation Solution Based on Embedded System and Real-Time

Object Recognition ……………………………………………………………….…..….

Marian-Daniel Drăghici, Andrei Dăian

 9

EmiNet …………….…………………………………………………………………...…

Ștefan Eminovici

 22

User-Centered AI: Improving Workflows through intelligent Chatbots ………..…..

Sophie Geisler, Peter M¨ohle, Marcel Wernisch, Felix Zorn

 29

WebXR-Previs: Low-Cost System for Real-Time Previsualization and Broadcast

Graphics……………………………………………………………………………...…...

Felix Husac

42

Implementation and Development of a Rated Voting System……........................…...

Giorgiana-Maria Marangoci, Alex-Andrei Rîpan, Stefan-Ioan Istina

 54

“SmartGarden: An Economical IoT-Enabled System for Indoor Plant Surveillance

and Irrigation" …………………………………………………………………...…..….

Alexandra Onose

64

TransitAI: An AI-Powered Conversational Assistant for Public Transportation

Information Access ……..…….……………………………………………………...…..

Eduard-Alexandru Oprea, Elena-Luiza Buzatu, Ioana-Valeria Turcin

79

AI Platform for Real-Time Cyber Threat Detection ….………………………………

Vlad-Matei Poienariu, Rares Muntean, Vlad-Stefan Alexandrescu

 93

Multi-Task Learning vs. Individual Models in Scarce Data Scenarios - Stock Price

Prediction ……..……………………………………………………………….……...….

Andrei Priboi

107

Game Engine Development: Research, optimization and performance

enhancement …………………………………………………………………..……..…..

Serkan Sadulov, Mustafa Mustafov

119

Evaluating Log Messages Using a Big Data Approach …..……………………………

Tobias Schneider

 133

Tecky ………………………………………………………………………………..……

Alexandru Emil Sofonea

 146

Web-based System for Dynamic Text Rendering and Interactive Content

Management in Full-screen Environments in the Music Industry ……………...……

Kristian P. Spasov, Martin S. Dzhurov, Serkan H. Sadulov

156

7

Organ 3D Model Reconstruction using Point Clouds ……………………...…….……

Steavu Matei-Cristian

 167

Road Condition Classification and Predictive Maintenance Using (OBD-II) Data …

Tanya Teresse, Jarin Justin Victoria

 174

Assessing Visual Tracking in Children with Special Needs: A Tool for

Ergotherapists ….…………………………………...………………………………....…

Gokul Perumbayil Vijayakrishnan, Anagha Manikathuparambil Baby, Blesson

Manjakunnel

182

List of authors …………………….………..……….…………………..................….…

 191

Sponsors ……………………………………………………………….…....……………

 196

8

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Autonomous Navigation Solution Based on Embedded

System and Real-Time Object Recognition

Marian-Daniel Drăghici, Andrei Dăian

Abstract

This paper presents the design, implementation and experimental evaluation of a low-cost,

embedded autonomous navigation platform that performs real-time traffic-sign recognition and

line following. The solution integrates a Raspberry Pi single-board computer, a Hailo-8L neural

accelerator and an Arduino microcontroller to split perception, decision and actuation tasks. The

perception pipeline combines an optimized YOLOv8 detector for sign recognition with classic

image-processing methods for robust line extraction; the two perception channels run in a

unified GStreamer pipeline that feeds the decision module. Navigation logic translates visual

cues into setpoints communicated to the Arduino by UART; the microcontroller executes a PID

controller and enforces safety limits on PWM outputs. The system exposes a remote Tkinter

dashboard connected through a Flask + Socket.IO server that provides live video, detection

overlays and run-time parameter tuning. Experimental runs on a miniature track demonstrate

reliable real-time operation, high detection precision for trained sign classes, and stable line

tracking under varied illumination. The main contribution is a practical, reproducible integration

of embedded AI acceleration with a vision pipeline and lightweight control logic, appropriate for

education, prototyping and further research.

1. Introduction

Autonomous navigation at small scale is a useful research and teaching platform because it

forces explicit design choices for perception, timing, resource allocation and safety while

remaining affordable and reproducible. Current trends in autonomous systems combine neural

perception with classical signal processing and modular control architectures; surveys and reviews

highlight the importance of fusing efficient deep detectors with embedded accelerators in

constrained environments. Recent literature surveys show the variety of algorithmic solutions and

point out the practical value of hybrid systems that balance accuracy and latency for edge devices

[3]. The YOLO family of detectors remains a widely used pragmatic choice for embedded

detection due to its single-stage architecture and high throughput [1,2].

9

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The present work pursues two concurrent objectives. The first is to demonstrate that a

YOLOv8 detector, when properly trained and compiled for an NPU, can be integrated into a real -

time pipeline on a Raspberry Pi paired with a Hailo-8L accelerator to achieve sign recognition

without overwhelming the host CPU. The second objective is to show how classical image

processing (rotation, smoothing, sharpening, color thresholding and morphological processing),

tightly coupled to a simple centroid-based error calculation and a PID actuator, can deliver stable

line following and intersection detection. The system design, pipeline implementation and tuning

were developed and validated on a custom miniature track; important implementation details and

parameter choices are described in the following sections. Many architectural and implementation

choices summarized here follow the structure and experiments detailed in the bachelor thesis and

implementation notes.

The remainder of the paper is organized as follows. Section 2 gives an overall architecture

description. Section 3 describes the perception subsystem in depth: acquisition, preprocessing,

line segmentation and neural inference for traffic signs. Section 4 explains the motion control,

message formats and the integration between Raspberry Pi and Arduino. Section 5 presents the

dashboard and network communication. Section 6 discusses test methodology and representative

results. Section 7 draws conclusions and outlines future work.

2. System Overview

The system consists of three primary subsystems, all shown in figure 1: perception, control,

and user interface. The perception subsystem acquires live video from the onboard Raspberry Pi

Camera v2.1, applies preprocessing using GStreamer, and executes the YOLOv8 model on the

Hailo-8L NPU. The detection outputs are processed by the control subsystem, which implements

decision-making logic for steering and speed regulation via an Arduino Uno and L298N motor

driver.

The user interface subsystem provides a Tkinter-based dashboard that enables operators to

observe the processed video stream, view detection results, and adjust control parameters such as

PID gains in real time.

Communication between the Raspberry Pi and the dashboard is managed through a Flask

server and Socket.IO, ensuring low-latency data transfer.

The perception module continuously feeds updated scene interpretations to the control

module, which updates motor commands accordingly. The dashboard receives status updates and

allows manual override when required.

Figure 1: System architecture

10

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3. Perception subsystem — image acquisition and processing

3.1 Acquisition and pipeline orchestration

Frames from the Raspberry Pi Camera Module v2.1 were ingested through a custom

GStreamer pipeline specifically designed for embedded real-time inference on the Hailo-8L

accelerator.

The source element was implemented with a custom source that’s modifiable from the

application (appsrc), configured to operate in real-time operation with a max buffer of 1 to

prevent latency accumulation by dropping stale frames when downstream processing is delayed.

This ensured deterministic timing and avoided buffer growth, as well as also being the most

recommended scenario in these conditions [4].

def SOURCE_PIPELINE(video_format="RGB", name="app_source"):

 return (

 f"appsrc name={name} is-live=true leaky-type=downstream max-buffers=1 ! "

 f"video/x-raw,format={video_format} ! "

)

Captured frames were standardized to the 640×640 resolution required by both the Hailo

module and the YOLOv8 model.

The stream was then split using the tee element: one branch was routed to the Hailo inference

path, while the other was processed with classical vision operations (affine rotation, Gaussian

smoothing, sharpening, and threshold-based segmentation) in parallel threads.

On the inference branch, the vendor-provided hailonet element executed the compiled

YOLOv8 model (.hef format) directly on the Hailo-8L NPU.

The display branch was responsible for visualization and debugging, having included explicit

queue elements to decouple processing stages, videoconvert with multithreaded execution (n -

threads=2) for efficient format conversion, and fpsdisplaysink to monitor runtime frame rates.

By design, this branch was isolated from the inference path to ensure that display overhead

did not interfere with real-time detection:

def DISPLAY_PIPELINE(

 video_sink="autovideosink", sync="false", show_fps="true", name="hailo_display"

):

 display_pipeline = (

 f'{OVERLAY_PIPELINE(name=f"{name}_overlay")} ! '

 f'{QUEUE(name=f"{name}_videoconvert_q")} ! '

 f'videoconvert name={name}_videoconvert n-threads=2 qos=false ! '

 f'{QUEUE(name=f"{name}_q")} ! '

 f'fpsdisplaysink name={name} video-sink={video_sink} sync=false text- overlay={show_fps} signal-fps-

measurements=true '

)

 return display_pipeline

Pipeline orchestration was managed by a custom Python application built on the GStreamer

API, that parses runtime parameters, instantiates the full pipeline string, and attaches the callbacks

to handle inference outputs.

11

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The following simplified example illustrates initialization with batch size, resolution, and

suppression thresholds:

class CustomGStreamerDetectionApp(GStreamerApp):

 def __init__(self, app_callback, user_data):

 parser = get_default_parser()

 parser.add_argument(

 "--labels-json",

 default=None,

 help="Path to custom labels JSON file")

 parser.add_argument(

 "--headless",

 action="store_true",

 help="Run the application in headless mode (no display).")

 parser.add_argument(

 "--stream-address",

 action="store_true",

 help="Streams address of the video source.")

 super().__init__(parser, user_data)

 args = parser.parse_args()

 self.batch_size = 2

 self.video_width=800

 self.video_height=600

 nms_score_threshold = 0.5

nms_iou_threshold = 0.5

This architecture ensured that both perception streams were synchronized in real time and

provided unified outputs to the navigation logic. The modular use of queues, controlled buffering,

and accelerator-aware configuration allowed the system to sustain 27 frames per second with an

average end-to-end latency of ~80 ms. These results demonstrate that combining GStreamer’s

modular streaming framework with Hailo’s dedicated NPU acceleration provides an effective and

reproducible approach to embedded real-time perception.

3.2 Color conversion and orientation correction

Captured frames arrive in RGB; OpenCV on the target uses BGR as its working format, so

each frame is converted to BGR immediately after capture to guarantee consistent color

processing. In the deployed hardware the camera is mounted inverted relative to the vehicle

direction; therefore each frame is rotated to correct orientation before any other processing. The

orientation correction is implemented by computing an affine rotation matrix about the image

center and applying a warp to the frame; this guarantees that subsequent geometric assumptions in

the segmentation stage remain valid.

3.3 Noise reduction and detail restoration

Real-world operation introduces high-frequency noise from lighting changes and vehicle

vibrations. The pipeline reduces noise with a Gaussian low-pass filter implemented as a 5×5

kernel; this kernel size was empirically selected because it removes transient pixel noise while

preserving edges relevant to the line. After smoothing, the pipeline applies a small sharpening

convolution to restore local contrast and re-emphasize the line edges that can be attenuated by the

12

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 blur operation. The sharpening uses a compact 3×3 kernel with a positive center coefficient and

negative neighbors; the combined blur-sharpen sequence improves robustness of the later

thresholding and contour extraction steps by producing clean but crisp edges. These parameters

and ordering were validated in on-track experiments.

3.4 Line segmentation, morphology and contour simplification

Line extraction targets a dark (black) guiding line painted on the track. After preprocessing,

color-based thresholding isolates dark pixels into a binary mask. Because real images contain

isolated noise and small gaps in the line, morphological operations are applied: an erosion pass to

remove tiny spurious blobs, followed by a dilation to recover the intended line thickness and

continuity. The combination reduces false positives and yields a connected component

representing the primary guidance line in the scene. Contours are extracted from the binary mask

and the largest contour by area is selected as the principal line candidate.

Figure 2: Intersection polygon

Contour complexity is reduced by approximating the contour with the Ramer–Douglas–

Peucker algorithm. This approximation produces a simplified polygon, as seen in Figure 2

highlighted in cyan, that preserves the salient geometric features (corners, bifurcations) while

significantly reducing the number of points used to represent the curve. The simplified polygon is

then analyzed to detect intersections: multiple polygon vertices with specific angular relations and

counts are interpreted as an active intersection; this triggers the sign-detection logic to check for

nearby traffic signs before deciding maneuvers. The sequence of image preprocessing,

morphological cleanup and polygon simplification was chosen for its computational efficiency

and for the clarity of the resulting geometric signatures used by the navigation logic.

13

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3.5 Centroid extraction and error computation

The control rule uses a simple and robust metric: the horizontal offset between the image center

and the centroid of the largest line contour. The centroid is computed from raw contour moments; the

lateral error is the pixel difference between centroid x coordinate and image center x coordinate. This

error is then scaled to a normalized setpoint range and sent to the Arduino for PID control.

Empirically, this approach provides good performance on smooth curves and allows the PID controller

to correct small deviations without aggressive oscillations. All centroid and error calculations are

performed per frame in real time inside the GStreamer application.

3.6 Neural inference for traffic signs (YOLOv8 on Hailo-8L)

Traffic sign detection was based on a YOLOv8 detector trained on a custom dataset prepared

with Roboflow. The dataset contained a total of 525 labeled images, divided into 462 training

images (88%), 37 validation images (7%), and 26 test images (5%). Preprocessing steps included

auto-orientation correction, resizing to 640×640 pixels, and contrast stretching for enhanced

visibility of features.

Data augmentation was applied to improve generalization under real-world conditions. Each

training image was expanded into three augmented samples through random transformations:

brightness variation between –22% and +22%, exposure adjustment between –12% and +12%,

and blur up to 1.6 pixels, with aditional augmentations being visible in figure 3.

Following training, the model achieved high precision and recall on the validation set. It was

exported to ONNX format and compiled with the Hailo Dataflow Compiler into a hardware-

executable file (.hef). This process included quantization and resource allocation steps to optimize

inference on the Hailo-8L neural processing unit. Runtime inference outputs underwent non-

maximum suppression to yield final bounding boxes and class labels, restricted to the lower

portion of the frame to reduce false positives and prioritize relevant signs near the track.

Figure 3: Model dataset

14

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 4. Motion control and inter-module communication

4.1 Overview of motion control logic

The navigation logic executes on the Raspberry Pi and chooses actions according to the

following modes: manual, autonomous line following, and intersection handling.

In manual mode, the dashboard operator sends direct speed commands which are forwarded to

the Arduino; in autonomous mode, the Pi computes the lateral error from the perception pipeline

and sends that error periodically to the Arduino for closed-loop control. When a sign is detected

and validated by the confidence and location checks (for example, "turn right" with confidence

above a configured threshold), the navigation logic executes a short preprogrammed maneuver

(advance N frames, apply yaw command for M frames), then returns to line reacquisition.

This behavior can be better understood through the following example where in Figure 2 the

Pi is detecting a "stop" sign at an intersection. Once the sign is recognized with sufficient

confidence, the navigation logic commands the vehicle to move forward for a few frames, stops

for a number of frames, and only then resume following the lane. The entire decision loop is

cyclic and runs at the frame rate of the perception pipeline, ensuring continuous adjustment to the

environment.

Figure 3: Intersection behavior

4.2 Serial protocol and command formats

Communication between Raspberry Pi and Arduino uses a simple, robust UART textual

protocol over the USB serial link. Two message formats are used by convention.

15

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The first format is the actuation command used in manual control: a header letter followed by

left and right motor speeds, for example the format "H,left_speed,right_speed" where left_speed

and right_speed are integer PWM values in the permitted range.

The second format is the autonomous error update: "E,error_value" where error_value is the

signed lateral deviation computed by the perception module. The Arduino treats these messages

deterministically: manual actuation messages override the PID mode, while error messages are

used by the PID controller when the system is in autonomous tracking mode. Timeouts and

validation checks are implemented on both sides to avoid stale commands.

4.3 Arduino controller, PID and safety

The Arduino Uno was responsible for executing low-level motor control through a discrete

PID (Proportional–Integral–Derivative) controller. At each cycle, the controller computed the

corrective action u(t) based on the lateral error e(t) received from the Raspberry Pi:

𝒖(𝒕) = 𝑲𝒑𝒆(𝒕) + 𝑲𝒊 ∫ 𝒆(𝒕)𝒅𝒕
𝒕

𝟎
+𝑲𝒅

𝒅𝒆(𝒕)

𝒅𝒕
 (1)

where Kp, Ki, and Kd represent the proportional, integral, and derivative gains, respectively.

The control signal was translated into PWM values managed by the L298N module that were

bounded between a lower safety threshold (to prevent motor stall) and an upper bound

corresponding to maximum duty cycle. The PID parameters were tuned through trial -and-error

experiments performed on the miniature track, gradually adjusting the gains until oscillations

were minimized and smooth trajectory tracking was achieved.

For safety, the Arduino implemented watchdog mechanisms: if no valid message was received

within a 200 ms timeout window, the controller forced motor commands to zero, halting the

vehicle until communication was re-established. This safeguard was crucial for preventing

uncontrolled motion during system testing.

4.4 Intersection maneuvers and realignment

When the perception pipeline signals an intersection and the sign detector confirms an

instruction, the Raspberry Pi sequences a short maneuver as noted above. During the maneuver

the Pi sends the centroid location to make sure that perform the desired maneuver is executed

correctly. After the maneuver, the system enters a realignment subroutine, where the perception

pipeline searches for the line again using a sliding-window centroid search and reduces vehicle

speed while the centroid returns to the image center. Once the centroid is reacquired, error updates

resume and closed-loop PID control continues.

This pragmatic approach avoids complex geometric re-localization and yields robust behavior on

structured, repeatable tracks.

5. Dashboard and networking

The communication between the embedded system and the operator interface is mediated by a

Flask server extended with Flask-SocketIO, which establishes a persistent WebSocket channel.

This allows low-latency, bidirectional data exchange, ensuring that video streams, telemetry, and

control commands are synchronized in real time[4].

To avoid blocking the vision pipeline, the server is initialized on a dedicated thread. This

ensures that communication tasks are executed independently of image processing:

16

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

def start(self):

 self.server_thread = thread.Thread(

 target=lambda: socketio.run(

 app, host="0.0.0.0", port=5000, allow_unsafe_werkzeug=True

),

 daemon=True,

)

 self.server_thread.start()

The dashboard transmits operator input using the emit function, with each message tagged by

an event name. On the server side, these events are matched to functions annotated with the same

identifier, creating a direct correspondence between client actions and server responses. In the

case of parameter tuning, the dashboard sends updated PID coefficients as an event, which the

server receives and applies immediately to the control loop.

This interaction is illustrated in the following code fragments. First, the client emits the new

parameters:

sio.emit('set_brightness', float(val))

The server then processes the event in the corresponding handler:

@socketio.on('set_brightness')

def handle_set_brightness(data):

 value = data.get('value', 0)

 pipeline_server.set_brightness(value)

 emit('brightness_ack', {'value': value}, broadcast=False)

The effect of such runtime adjustments is visible in the live video feed. Figure 4 shows that,

without tuning, the guiding line is detected but with unstable and noisy contours.

Figure 4: Dashboard with default parameters

17

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 In contrast, Figure 5 illustrates the improvement achieved when brightness, contrast, and filtering

settings are adjusted: the detected line is clearly highlighted and more stable.

Figure 5: Dashboard with modified parameters

The comparison between Figures 4 and 5 demonstrates the necessity of runtime parameter

tuning to maintain robust perception under varying environmental conditions.

The video stream itself is refreshed continuously within the Tkinter interface, maintaining

real-time operator feedback:

frame = Image.open(BytesIO(response.content))

photo = ImageTk.PhotoImage(image=frame)

video_label.config(image=photo)

video_label.image = photo

root.after(15, update_video)

In addition to parameter tuning, the dashboard enables manual vehicle control through

joystick commands. These are emitted by the client and interpreted by the server in the annotated

handler:

@socketio.on('set_mode')

def handle_set_mode(data):

 mode = data.get('mode', 'auto')

 pipeline_server.set_control_mode(mode)

 emit('mode_ack', {'mode': mode}, broadcast=False)

This architecture transforms the dashboard from a simple visualization tool into a control and

diagnostic interface, where operator interventions are immediately integrated into the system’s

18

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 behavior. By combining real-time monitoring, parameter adjustment, and manual override, the

Flask–SocketIO communication layer ensures tight coupling between perception, decision-

making, and actuation

6. Evaluation

The evaluation of the system was carried out on a miniature autonomous vehicle platform.

The car, shown in Figure 6, integrates all of the hardware components specified above, enabling

for real-time testing of both perception and control components under realistic conditions.

Figure 6: Assembled hardware components

For the traffic-sign recognition task, the YOLOv8 model was trained using a custom dataset

prepared on Roboflow[5]. The dataset contains representative traffic signs printed and placed on

the track, augmented to cover variations in lighting and orientation. The progression of training

and validation metrics is illustrated in Figure 7, which shows steady convergence of the model:

classification and localization losses decreased continuously, while precision, recall, and mAP

values stabilized at high levels. The detector achieved an mAP50 close to 0.99 and a mAP50-95

above 0.90, confirming that the model generalized well beyond the training set.

Figure 7: Model training matrics

19

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Qualitative validation was performed by running batch inference on unseen images, with

results shown in Figure 8. The model consistently detected relevant signs such as “stop,” “turn

right,” “turn left,” and “no entry,” even under challenging illumination or partial occlusions.

Bounding boxes and class labels were generated with high confidence, demonstrating robustness

for real-time navigation scenarios.

Figure 8: Validation batch

Finally, system-level experiments were conducted on a custom track including straight

segments, curves, and intersections marked with printed traffic signs. The perception and control

pipelines operated at an average throughout of 27 frames per second, with an end-to-end latency

of around 80 ms.

This ensured timely reactions to environmental cues. The line-following algorithm maintained

stable trajectories with minimal oscillations, while intersection handling proved reliable: upon

detecting a sign, the vehicle executed the appropriate maneuver before resuming the lane.

These results confirm that the proposed integration of classical image processing with

YOLOv8 inference accelerated by the Hailo-8L enables a low-cost but effective autonomous

navigation solution. The combination of quantitative metrics and qualitative results, as presented

in Figures 4–6, highlights both the robustness of the perception subsystem and the stability of the

overall navigation performance.

7. Conclusions and Future Work

The presented work demonstrates the feasibility of implementing a fully functional, low-cost

autonomous navigation system using embedded AI acceleration and real-time object detection.

The combination of the Raspberry Pi, Hailo-8L, and Arduino platforms results in a scalable

20

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 architecture suitable for both educational activities and experimental research in autonomous

driving.

Future developments will focus on enhancing the system’s capabilities through the integration

of simultaneous localization and mapping (SLAM) techniques combined with LiDAR sensing for

dynamic mapping, the addition of obstacle avoidance strategies, the implementation of a mobile -

based control interface, and the exploration of reinforcement learning methods for end-to-end

driving policy optimization.

Acknowledgement: This work was supervised by Ralf Fabian, PhD, from Lucian Blaga

University of Sibiu.

References

[1] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time Object

Detection, arXiv:1506.02640.

[2] J. R. Terven and D. M. Cordova-Esparza, A Comprehensive Review of YOLO Architectures in

Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS, arXiv:2304.00501v6.

[3] S. Nahavandi et al., A Comprehensive Review on Autonomous Navigation, arXiv:2212.12808.

[4] GStreamer Application Development Manual,

https://gstreamer.freedesktop.org/documentation/application-development/index.html?gi-language=c

[5] Flask Server Official Documentation, https://flask.palletsprojects.com/en/stable/

[6] Traffic sign detection dataset, https://app.roboflow.com/daniel-bsc7p/detectie-semne-de-circulatie/11

Marian-Daniel Drăghici

Lucian Blaga University of Sibiu

Faculty of Science

Doctor Ion Ratiu Street 5-7, Sibiu

ROMANIA

E-mail: mariandaniel.draghici@ulbsibiu.ro

Andrei Dăian

Lucian Blaga University of Sibiu

Faculty of Science

Doctor Ion Ratiu Street 5-7, Sibiu

ROMANIA

E-mail: andrei.daian@ulbsibiu.ro

21

https://gstreamer.freedesktop.org/documentation/application-development/index.html?gi-language=c
https://flask.palletsprojects.com/en/stable/
https://app.roboflow.com/daniel-bsc7p/detectie-semne-de-circulatie/11

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

EmiNet

Ștefan Eminovici

Abstract

EmiNet is a software application employing a Multi-Layer Perceptron (MLP) neural network to

provide preliminary diagnoses based on user-inputted symptoms. The model, trained on a dataset

covering approximately 80 common illnesses, utilizes SMOTE (Synthetic Minority Over-sampling

Technique) to address class imbalance, and its development involved k-fold cross-validation to ensure

robust generalization and almost perfect predictions. It can request additional information (further

symptoms) when the confidence level of the initial prediction is low. Natural language symptom

processing is performed using advanced techniques, including the NLTK and spaCy libraries. The

artificial intelligence component is implemented using TensorFlow and Keras, alongside NumPy for

numerical operations. The user interface is developed in Flutter, communicating via a Flask API with

the Python-implemented backend. Multilingual support (English/Romanian) ensures broader

accessibility.

1 Introduction

Navigating online medical information when you're not feeling well can be overwhelming.

EmiNet was born out of a desire to simplify this first step: offering initial guidance based on the

symptoms you describe. I wanted to create a helpful tool that would allow people to better understand

the possible causes of their health condition before consulting a specialist.

The heart of EmiNet is a neural network – a form of artificial intelligence – trained to analyze

symptoms and suggest potential conditions, along with a confidence level. I hope this will help inform

users and facilitate subsequent discussion with their doctor. To be useful to as wide an audience as

possible, the project works in both English and Romanian. However, it is vital to emphasize: EmiNet is

an informational guide, not a replacement for professional medical consultation. Diagnoses are

indicative and must always be confirmed by a doctor.

2 Design and User Interface

I wanted EmiNet to be easy and pleasant to use, even for someone less familiar with technology

or medical terms. We focused on a clean and intuitive design that presents information clearly and

directly.

22

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 a. Sources of Inspiration

The inspiration behind EmiNet is deeply personal. Conversations with my brother, a medical

student, showed me how complex the diagnosis process is and how helpful digital tools can be. But

perhaps the most powerful motivation comes from the memory of my mother, a cardiologist. Losing her

to COVID-19 painfully underscored the importance of rapid access to medical information and tools.

Even though EmiNet cannot replace a doctor’s expertise, I hope it serves as a valuable first step, inspired

by her dedication.

b. Why Flutter for the interface

To bring EmiNet to life on users’ screens, we chose Flutter, Google’s modern toolkit. Flutter’s

main advantage is that it lets us build applications that look and perform great on mobile (iOS, Android),

web, and desktop—all from the same codebase. This means faster development and a consistent user

experience. With Flutter’s visual components (widgets), I created a friendly interface where users can

input symptoms and view results—preliminary diagnosis, warnings, and possible follow-up questions—

clearly and easily. This interface then "talks" to the application’s "brain" (Python backend) through a

Flask API, sending symptoms and receiving intelligent analysis in return.

Fig. 1: Home Page Fig. 2: Language settings

Fig. 3: Conversation history

3 System Architecture and Technologies Used

The application’s “brain”, which analyzes the symptoms, runs on a Python backend using

powerful tools from machine learning and natural language processing (NLP).

23

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3.1 Data Preparation (data_preparation.py)

This step transforms raw data (a list of diseases and associated symptoms in

illnesses_and_symptoms.csv) into formats that the neural network can understand. We used pandas for

data reading and cleaning. Then, NLP techniques were applied: lemmatization with spaCy (reducing

words to their base form), removing stopwords (common unimportant words) using nltk and spaCy. To

improve model robustness, we augmented data by replacing words with synonyms (using WordNet from

nltk). Since diseases appear with different frequencies, I used SMOTE (from imbalanced-learn) to

generate synthetic examples for underrepresented classes, balancing the dataset. The processed text was

then transformed into numerical vectors using TF-IDF (from scikit-learn), and disease names were

numerically encoded using LabelEncoder. Both the TF-IDF vectorizer (vectorizer.pkl) and the label

encoder (label_encoder.pkl) were saved for prediction use.

1. # data_preparation.py

2. def preprocess_text(text):

3. """Preprocesses text using spacy: lowercasing, lemmatization,

removing stopwords and non-alpha tokens."""

4. if not isinstance(text, str):

5. text = str(text) # Ensure text is string

6.

7. doc = nlp(text.lower())

8. words = [token.lemma_ for token in doc if not token.is_stop and

token.is_alpha]

9. return ' '.join(words)

10.

11. # Reading training set

12. df = pd.read_csv('illnesses_and_symptoms.csv')

13. df['Processed_Symptoms'] = df['Symptoms'].apply(preprocess_text)

14.

15. # Data augmentation with synonyms

16. def augment_with_synonyms(text, num_augmentations=2):

17. words = text.split()

18. for _ in range(num_augmentations):

19. word_idx_to_replace = random.randint(0, len(words)-1)

20. synonyms = get_synonyms(words[word_idx_to_replace])

21. if synonyms:

22. words[word_idx_to_replace] = random.choice(synonyms)

23. return ' '.join(words)

24.

25. # Applying SMOTE for class balancing

26. X_resampled, y_resampled = SMOTE().fit_resample(X, y)

27.

3.2 Neural Network (model.py)

The core AI component is a Multi-Layer Perceptron (MLP) neural network implemented using

TensorFlow and Keras. The network consists of 4 layers, from which 2 hidden layers. The network takes

TF-IDF vectors of symptoms and, through dense layers with ReLU activation, learns complex patterns

between symptoms and diseases. Dropout and Batch Normalization layers prevent overfitting and

stabilize training. Early stopping and reducing the learning rate when encountering a plateau are 2

methods which were also used in training the model. The final layer uses softmax activation to output

the probability of each possible illness.

24

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

1. # model.py

2. def build_model(input_shape, num_classes):

3. """Builds the Keras Sequential model."""

4. model = Sequential(name="Symptom_Diagnosis_MLP")

5. model.add(Input(shape=(input_shape,), name="Input_Layer"))

6.

7. # Input Layer -> Dense + BatchNorm + Dropout

8. model.add(Dense(256, activation='relu',

9. kernel_regularizer=l1_l2(l1=0.001, l2=0.001),

10. name="Dense_1"))

11. model.add(BatchNormalization(name="BatchNorm_1"))

12. model.add(Dropout(0.3, name="Dropout_1"))

13.

14. # Hidden Layers

15. model.add(Dense(128, activation='relu', name="Dense_2"))

16. model.add(BatchNormalization(name="BatchNorm_2"))

17. model.add(Dropout(0.4, name="Dropout_2"))

18.

19. # Output Layer

20. model.add(Dense(num_classes, activation='softmax',

name="Output_Layer"))

21.

22. model.compile(

23. optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),

24. loss='sparse_categorical_crossentropy',

25. metrics=['accuracy']

26.)

27. return model

28.

3.3 Training and Cross-validation (main.py, model.py)

The model was trained on the prepared and SMOTE-balanced data. To evaluate generalization

on unseen data, I used stratified cross-validation (StratifiedKFold from scikit-learn). The dataset was

split into K sets, training and testing the model K times using a different test set each time. The final

saved model (model.keras) is the one that performed best during this process.

1. # main.py

2. # Preparation for training with cross-validation

3. n_splits = 5

4. skf = StratifiedKFold(n_splits=n_splits, shuffle=True,

random_state=42)

5. cv_scores = []

6.

7. # Cross-validation process

8. for train_idx, val_idx in skf.split(X_resampled, y_resampled):

9. X_train, X_val = X_resampled[train_idx], X_resampled[val_idx]

10. y_train, y_val = y_resampled[train_idx], y_resampled[val_idx]

11.

12. # Building and training model

13. model = build_model(X_train.shape[1], len(np.unique(y_train)))

14. history = train_model(model, X_train, y_train, X_val, y_val)

15.

25

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

16. # Evaluating on test set

17. val_loss, val_acc = model.evaluate(X_val, y_val, verbose=0)

18. cv_scores.append(val_acc)

19.

20. # Saving final model for production

21. # final_model = ... (logic to select the best model based on

cv_scores/history)

22. final_model.save("model.keras")

3.4 Performance Evaluation (evaluate.py)

Model performance was evaluated on a separate test set using standard scikit-learn metrics:

overall accuracy, detailed classification report (Precision, Recall, F1-Score per illness), and a confusion

matrix to visualize misclassifications.

1. # evaluate.py

2. def evaluate_model(model_path, X_test, y_test, label_encoder):

3. """Evaluates model performance on test data."""

4. model = load_model(model_path)

5.

6. # Prediction & Evaluation

7. y_pred = model.predict(X_test)

8. y_pred_classes = np.argmax(y_pred, axis=1)

9.

10. # Computing Metrics

11. accuracy = accuracy_score(y_test, y_pred_classes)

12. report = classification_report(

13. y_test,

14. y_pred_classes,

15. target_names=label_encoder.classes_

16.)

17.

18. # Confusion matrix for visualisation

19. cm = confusion_matrix(y_test, y_pred_classes)

20.

21. return accuracy, report, cm

22.

3.5 Application Programming Interface - API (app.py)

The connection between the Flutter interface and the Python backend is handled by a Flask web

API. The main endpoint (/predict) receives user symptoms (and language or follow-up answers), loads

the trained model and saved artifacts (vectorizer, encoder), preprocesses the new symptoms, requests a

prediction, interprets the result (most likely illness, confidence level, whether to ask for more

symptoms), translates the final message (via translations.py), and returns a structured JSON response.

A simple endpoint (/health) checks API status. Flask-Cors is used to ensure secure communication

between frontend and backend.

1. # app.py

2. @app.route('/predict', methods=['POST'])

3. def predict():

26

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

4. """API endpoint to predict illness based on symptoms."""

5. # Parsing data

6. data = request.get_json()

7. symptoms_text = data.get('symptoms', '').strip()

8. language = data.get('language', 'en').lower()

9. follow_up_response = data.get('follow_up', '').lower().strip()

10. # has_follow_up = bool(follow_up_response) # Determine if a

follow-up answer was given

11.

12. # Preprocessing symptoms

13. if language == 'ro':

14. symptoms_text = translate_to_english(symptoms_text) #

Assume translation needed for model

15. processed_symptoms = preprocess_text_for_api(symptoms_text) #

API specific preprocessing

16.

17. # Vectorizing and predicting

18. symptom_vector = vectorizer.transform([processed_symptoms])

19. prediction_probabilities = model.predict(symptom_vector)[0]

20. predicted_class_index = np.argmax(prediction_probabilities)

21. confidence_score =

float(prediction_probabilities[predicted_class_index]) * 100

22.

23. # Translating and formatting answer

24. illness_name_en = label_encoder.classes_[predicted_class_index]

Get English name first

25. illness_name = illness_name_en # Default to English

26. if language == 'ro':

27. illness_name = translate_illness(illness_name_en, 'ro') #

Translate if needed

28.

29. # Generation of follow-up question if necessary

30. follow_up_question = ""

31. # Assume has_follow_up logic exists based on follow_up_response

check

32. # Example logic (replace with actual):

33. has_follow_up = len(follow_up_response) > 0

34. if confidence_score < 70 and not has_follow_up:

35. # Pass English name for consistent question lookup

36. follow_up_question =

get_follow_up_question(illness_name_en, language)

37.

38. # Formatting final answer

39. diagnosis_message = get_diagnosis_message(illness_name,

confidence_score, language)

40.

41. return jsonify({

42. 'diagnosis_message': diagnosis_message,

43. 'follow_up_question': follow_up_question

44. }), 200

Model Saving is addressed by saving the trained model (model.keras), the TF-IDF vectorizer

(vectorizer.pkl), and the disease encoder (label_encoder.pkl) to disk, allowing the API to load them

quickly at startup without retraining.

27

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Multilingual support & follow-up questions) is implemented through dedicated dictionaries and

functions were created for automatic message translation, disclaimer messages, and follow-up questions

between English and Romanian, based on user preference.

4 Conclusions and Future Directions

EmiNet demonstrates how artificial intelligence and natural language processing can collaborate

to create an initial medical information tool. We developed a full system, from data preprocessing and

training a robust MLP model to exposing features through a web API and integrating with a user-friendly

interface (Flutter). The ability to understand two languages and request further clarifications increases

the app’s practical utility.

The main goal of EmiNet is to offer users a quick, informed initial perspective on the possible

causes of their symptoms. However, we emphasize once again: EmiNet is an informational guide, not a

replacement for professional medical diagnosis. Final medical decisions and treatment plans must be

determined exclusively by a specialist. This project demonstrates the potential of AI in medical

awareness and paves the way for future developments. Possible improvements include expanding the

database with more illnesses, exploring the integration (with strict confidentiality) of other data types

(e.g., medical history), and investigating more advanced AI architectures to enhance prediction

accuracy.

Acknowledgement: This work was supervised by Professor Delilah Florea, from Samuel von

Brukenthal National College Sibiu, Romania.

References

[1] TensorFlow: An end-to-end platform for machine learning, https://www.tensorflow.org/

[2] NLTK Project, Natural Language Toolkit (NLTK). https://www.nltk.org/

[3] Explosion AI, spaCy: Industrial-strength Natural Language Processing, https://spacy.io/

[4] Keras: A superpower for ML developers, https://keras.io/

[5] Scikit-learn: Machine Learning in Python, https://scikit-learn.org/

[6] Flask: A lightweight WSGI web application framework, https://flask.palletsprojects.com/en/

[7] Flutter: Build apps for any screen, https://flutter.dev/

[8] NumPy: Fundamental package for scientific computing with Python, https://numpy.org/

[9] Pandas: Data analysis and manipulation tool, https://pandas.pydata.org/

[10] imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine

learning, https://imbalanced-learn.org/

[11] National Health Service (NHS). Help improve online NHS services by also accepting analytics

cookies., https://www.nhs.uk/conditions/

Ștefan Eminovici

„Samuel von Brukenthal” National College Sibiu

Mathemathics-Informatics, intensive Informatics

ROMANIA

E-mail: stefaneminovici@yahoo.com

28

https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.tensorflow.org%2F
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.nltk.org%2F
https://spacy.io/
https://keras.io/
https://scikit-learn.org/
https://flask.palletsprojects.com/en/
https://flutter.dev/
https://www.google.com/url?sa=E&q=https%3A%2F%2Fnumpy.org%2F
https://www.google.com/url?sa=E&q=https%3A%2F%2Fpandas.pydata.org%2F
https://www.google.com/url?sa=E&q=https%3A%2F%2Fimbalanced-learn.org%2F
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.nhs.uk%2Fconditions%2F

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

User-Centered AI: Improving Workflows through intelligent
Chatbots

Sophie Geisler, Peter Möhle, Marcel Wernisch, Felix Zorn

Abstract

The manual procedure of requesting and scheduling rooms for university classes often causes con-
siderable administrative effort and delays. This paper presents an AI-driven chatbot integrated into a
university room booking system to handle first-level support queries (such as room availability checks
and booking requests) through natural language. The proposed chatbot leverages a Large Language
Model (LLM) to understand user inquiries and generate context-aware responses, thereby automat-
ing routine booking interactions. We outline the system’s architecture, highlighting the chatbot’s
central role as an interface between users and the scheduling backend. The chatbot’s design incor-
porates an LLM component for language understanding and generation, guided by system-defined
prompts and safeguarded by validation layers to ensure reliable and secure operation. We discuss
how user interaction is facilitated via a web frontend and a chat platform integration, and how the
AI-driven decision-making enables flexible, context-sensitive dialogue management. In this context, a
self-developed backend service was introduced to interface with the existing booking system, ensuring
accurate retrieval and synchronization of room availability and booking details. An initial workflow-
based chatbot design is described as a conceptual alternative, though our implementation focuses
on the User-Centered approach. Preliminary results from the prototype indicate improved efficiency
(reduced response times and automated task completion) and high intent-recognition accuracy, while
also revealing important considerations regarding system safety and governance. We conclude with
insights on the practical implications of deploying LLM-powered chatbots for scheduling support and
directions for future work to enhance robustness and scalability.

1 Introduction

Scheduling classrooms and other resources in academic institutions is often a time-consuming process
involving numerous manual steps and communications. Instructors typically request room bookings or
modifications via emails or phone calls, which administrative staff must process in the scheduling system.
This manual workflow can lead to delays, miscommunication, and increased workload for support staff.
There is a clear opportunity to streamline this process by introducing automation in the form of an
intelligent assistant.

Recent advances in artificial intelligence, particularly in Large Language Models (LLMs) such as GPT-
3 and GPT-4, have enabled the development of more sophisticated chatbots capable of understanding and
generating human-like language [1]. Such AI-driven chatbots can engage with users in natural language,
interpret their requests, and perform complex tasks by interfacing with external systems. Deploying
an LLM-powered chatbot for room booking presents an attractive solution to handle routine scheduling
inquiries and requests automatically, acting as a first-level support agent that is available 24/7.

To improve efficiency and user experience, we propose a chatbot-based solution that serves as a
conversational interface for room and schedule management. Modern Large Language Models enable the
chatbot to communicate in natural language, understand user intents, and perform actions, effectively
bridging the gap between end-users and the complex scheduling backend. By automating recurring

29

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

queries and guiding users through structured dialogues, the chatbot (named the Chat-Provider) aims to
reduce manual effort and errors while maintaining oversight for critical decisions. This user-centered AI
approach treats the chatbot as a “friendly colleague” always available to assist with booking tasks in a
straightforward manner.

Our approach emphasizes a modular architecture that integrates seamlessly into the existing system
landscape of the university. A web-based frontend and a chat platform interface (e.g., a Mattermost bot)
allow users to interact with the Chat-Provider, which in turn communicates with a dedicated manage-
ment backend service. The management service handles business logic and data persistence, including
integration with the legacy Sked (lecture management) database.

A core challenge in designing the Chat-Provider is balancing intelligent autonomy with predictable
control. We focus on a modular architecture that combines generative AI capabilities with deterministic
workflow logic to ensure reliable operation. In this context, we explore two conceptual architectures for
the Chat-Provider: an orchestrated multi-agent approach and a single-agent (chat-oriented) approach.
Both solutions are implemented with a strong emphasis on extensibility, security (preventing unwanted
or incorrect behavior), and efficiency.

This paper is organized as follows: Section 2 describes the system architecture and the chatbot’s
integration into the room booking infrastructure. Section 3 details the chatbot’s functionality, including
user interaction flows and the AI-driven decision-making process of the LLM component. Section 4
discusses the implementation and early evaluation of the prototype, highlighting achieved improvements
and encountered challenges. Section 5 concludes the paper with a summary of findings and an outlook
on future enhancements.

2 Literature Review

Recent research on intelligent conversational systems provides several technical building blocks that di-
rectly inform the framework proposed in this paper. We summarise the most relevant strands here.

LLM-based chatbots for administrative tasks. Large language models such as GPT-4 enable
chatbots to interpret unstructured, human language requests and translate them into concrete API calls.
HuggingGPT [3] shows that a single LLM agent can decompose a user goal, select appropriate external
tools, and merge partial results into a coherent answer. Our system follows the same principle but is
narrowed to the university room-booking domain. Unlike HuggingGPT’s general marketplace approach,
we embed domain-specific knowledge (room codes, capacity rules, approval policies) and connect the
agent to protected campus databases.

AI-driven workflow automation. Real-world scheduling involves several dependent steps (avail-
ability check → booking → confirmation). WorkflowLLM [4] fine-tunes a language model on thousands
of recorded automation scripts and proves that an LLM can plan API invocations in the correct order
and recover from errors. Our framework adopts this idea by exposing a compact set of typed actions
(e.g. book event timeslot) and letting the LLM decide which sequence fulfils a given goal. In contrast
to WorkflowLLM’s benchmark setting, we integrate additional guard rails: every irreversible action is
wrapped in a confirmation routine or a human-in-the-loop approval.

Modular software architectures. To ensure longevity and testability, the application core is
modelled after the hexagonal architecture (ports and adapters pattern) defined by Cockburn [5]. Domain
logic is completely isolated from infrastructure; concrete technologies such as a web UI, a Mattermost bot,
or the room-database connector appear only as interchangeable adapters. Compared to classic layered
designs, this separation allows the LLM agent and future auxiliary agents to evolve independently of
front-end or storage technology and supports gradual migration toward alternative booking back-ends.

Collectively, the cited work underlines five key insights: (1) a single LLM can map natural language to
structured actions, (2) specialised fine-tuning enhances multistep orchestration, (3) multi-agent patterns
offer headroom for scaling task complexity, (4) strict validation layers remain imperative for safe deploy-
ment, and (5) hexagonal modularity reduces coupling and accelerates integration into legacy landscapes.
The proposed chatbot combines these findings by placing a domain-tuned LLM agent at the centre of a
hexagonal microservice architecture, surrounded by explicit guard rails and well-defined adapters.

30

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

3 System Architecture - Methodology and System Design

The overall architecture of the room booking chatbot system, named CampusRoom, follows a microservices
approach, separating the user interface components from the backend services. Figure 1 provides an
overview of the main components and their interactions. The two primary frontend interfaces — a
web application and a chat platform bot — allow users to interact with the chatbot. These frontends
communicate with the Chatbot Service, which encapsulates the core chatbot logic and LLM capabilities.
The Chat-Provider Service in turn interfaces with the Management System (scheduling backend) to
retrieve and update room booking information.

Figure 1: System architecture of the room booking chatbot, showing user interface clients (web app and
chat bot) connecting to the Chatbot Service, which interacts with the Management backend system and
database.

In the proposed architecture, the Chatbot Service operates as an intermediary between users and the
room booking backend. The web frontend is implemented as a single-page application (using Angular)
that provides a chat interface embedded in a web page (Figure 2).

Figure 2: User Interface of the web frontend.

The chat platform integration is implemented as a bot user within an institutional messaging platform
(Mattermost), enabling users to converse with the chatbot in a channel or direct message. Both frontends

31

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

send user messages (along with metadata such as user ID and a chat session ID) to the Chatbot Service
via REST API calls. The chat session ID allows the service to maintain context across multiple turns of
conversation with each user.

The backend consists of the self-developed room scheduling system (which we refer to as the man-

agement system) and associated databases of the existing integrated scheduling software. A hexagonal
architecture (Figure 3) was chosen, providing high flexibility and adaptation for alternative systems.

Figure 3: The management-system, providing a hexagonal architecture for higher flexibility.

The Chat-Provider Service queries this backend to check room availability, fetch schedules, and
create or modify bookings as needed. By using well-defined APIs between the Chat-Provider Service and
the Management, the integration remains decoupled: the Chat-Provider can operate without needing
direct access to the internal database, and the scheduling system requires minimal changes to support
the Chat-Provider’s queries. Each microservice, including the Chat-Provider Service and other backend
components, manages its own data storage, ensuring loose coupling and easier maintenance.

We considered two conceptual approaches for the chatbot’s internal decision-making architecture
during development. The first was a workflow-oriented design structured as our concept of a multi-agent
system, where the task of handling a user query would be broken down into a sequence of specialized
steps. In this multi-agent approach, separate AI agents could be responsible for distinct subtasks, such
as intent recognition, information retrieval, decision making, and response generation, with a central
orchestrator coordinating their actions. This design imposes either a predefined dialogue flow or workflow
or alternatively a dynamically created one, based on the system’s capabilities and their metadata: for
example, when a user wants to book a room, the system would explicitly follow steps to first select or
create a workflow, gather required information (date, time, participants, etc.), query the database, and
then confirm the booking. Such a structured approach can simplify oversight and ensure each subtask is
handled by an expert module, but it may be less flexible in handling unexpected queries or conversational
turns.

The second approach, which we finally pursued further, is a single-agent LLM-driven architecture as
illustrates in 5. In this design, a single large language model agent handles the user’s query end-to-end,
leveraging its internal reasoning capabilities to decide how to address the request. Rather than following

32

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 4: The implemented Workflow-Oriented multi-agent-solution.

or creating a compound workflow, the LLM interprets the user’s input and dynamically determines only
the next steps (e.g., whether to ask a clarification question, perform a database lookup, or formulate an
answer) within the scope of its programming. This approach takes advantage of the LLM’s ability to
understand context and intent in a flexible manner, allowing a natural, purposeful dialogue. It simplifies
the architecture by consolidating the conversational logic within one intelligent component, at the cost
of that component needing to be carefully guided and controlled.

To maintain reliability and predictability in the LLM-driven approach, our system incorporates several
design principles. First, the architecture remains modular and extensible – the Chatbot Service is
structured so that underlying components (such as the LLM model, the database connectors, or the agents
modules) can be modified or upgraded independently. Second, we enforce safety through control

layers: the Chat-Provider’s outputs are monitored and validated, and certain high-impact actions (like
finalizing a booking) require an extra confirmation step (akin to a human-in-the-loop approval) before
execution. Third, we strive for efficiency and scalability: the LLM is used primarily for understanding
language and complex decision-making, whereas simpler operations (e.g., parsing a date or verifying a
room code format) are handled with lightweight, rule-based logic or standard library functions. These
principles ensure that the system is robust in the face of malicious inputs, remains adaptable to future
changes, and uses computational resources wisely.

4 Chatbot Interaction and AI-Driven Decision Making

The user interacts with the system by sending messages in natural language through one of the provided
frontends. From the user’s perspective, the chatbot behaves like a virtual personal assistant capable of
answering questions and performing actions related to room scheduling. For instance, a conversation
might begin with the user asking, ”Is there an available classroom for next Monday at 10 AM capable for

30 people?”. The chatbot will interpret this request, determine what information is being sought, and
take appropriate actions to respond.

Under the hood, when a message is received by the Chat-Provider Service, it is processed by the LLM
component which serves as the brain of the chatbot. This LLM component performs Natural Language
Understanding (NLU) by parsing the input to extract the user’s intent (e.g., checking room availability)
and key entities such as dates, times, or specific room requirements. In our implementation, the LLM
is prompted with the conversation history and a predefined system prompt that outlines its role and

33

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 5: The structural design of the user-centered single agent implmentation.

constraints. This system prompt acts as a guideline for the AI, specifying the domain of discourse (room
booking), the style of interaction (helpful and concise), and any rules it should follow (for example, not
to perform actions outside its scope or to ask for confirmation before booking a room on behalf of the
user). The response will be interpreted in a predefined JSON structure, guided by the model’s system
prompt.

Once the user’s intent is understood, the chatbot needs to fulfill the request. In many cases, this
involves retrieving data from the Management system or updating it. In our LLM-driven design, the
Chatbot Service contains logic to perform such operations when required. For example, if the LLM’s
analysis of the query indicates that a database lookup is needed (implicitly or through the content of the
LLM’s output), the service will query the scheduling system’s API for room availability. We designed
the interaction between the LLM and external tools in a manner inspired by the ReAct paradigm [2],
where the AI can ”think” (reason about what to do) and then ”act” (invoke an external tool or API) in
a controlled loop. In practice, this means the Chatbot Service might use the LLM to generate an inter-
mediate representation or query plan (e.g., an internal command like ”CHECK AVAILABILITY(date,
time, capacity)”) which the service then executes against the backend. The result (e.g., a list of available
rooms) is then incorporated into the LLM’s context for generating the final answer.

Throughout this process, maintaining context across turns is crucial. The system keeps a record of
the conversation state associated with the chat session ID. If the user asks a follow-up question like ”Can
you book Room H.1.1 for me?”, the chatbot remembers the earlier discussion about Monday 10 AM and
knows the context (the user is likely referring to booking Room H.1.1 at that previously mentioned time).
The LLM uses the accumulated dialogue (truncated to fit within its context window as needed) along
with the system prompt to generate a relevant response or action for each turn.

Figure 6 illustrates the internal concept of the LLM-driven chatbot component. The LLM is at
the core, taking in the user query plus context and system instructions, and outputting either a direct
response or an action suggestion. Surrounding it are the supporting mechanisms: the system prompt that
governs its behavior, the context memory (chat history and any extracted parameters stored from previous
turns), and the interface to external services (such as the scheduling database). This design enables the
AI to handle the conversational aspect while delegating concrete operations (like data retrieval) to the
appropriate modules.

To ensure the chatbot behaves reliably, we implemented several safety and validation measures.
All user inputs are first passed through a filter to detect potentially malicious or irrelevant content

34

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 6: Conceptual design of the chatbot’s LLM component. The LLM processes user input along with
a system prompt (providing guidelines and constraints) and the conversation context. It produces either
a conversational response or a formatted action request. The Chatbot Service executes necessary actions
(e.g., database queries) and feeds results back into the LLM before finalizing the response to the user.

(for instance, attempts at prompt injection or unrelated queries); suspicious inputs can be sanitized or
refused. The system prompt includes explicit instructions to the LLM to refuse requests outside the scope
of room booking support or any that would violate usage policies. After the LLM generates a response,
the output is checked against expected formats. If the LLM suggests an action like booking a room,
the Chatbot Service will require a confirmation step. For example, the chatbot might respond, ”Room
H.1.1 is available at 10 AM. Would you like to book it?” Only upon the user’s explicit confirmation
does the service proceed to execute the booking transaction in the backend system. Furthermore, certain
critical actions can be flagged for manual review by an administrator (a ”human-in-the-loop”) if they fall
outside predefined safe parameters. This conservative approach helps prevent AI from making unintended
changes in the scheduling system and builds trust with users and administrators.

Another aspect of decision-making is handling errors or uncertainties. If the LLM is not confident
about user intent (say the request was ambiguous), it is instructed via the prompting strategy to ask
clarifying questions rather than guess. For instance, if a user simply says ”Schedule a meeting for Room
H.1.1,” the bot might reply with ”Could you provide a date and time for the meeting in Room H.1.1?” To
improve user-centered decision-making and guide the user, an action that couldn’t be executed will also
deliver hints to the LLM on how the user could proceed. This kind of dialogue management is crucial
for a good user experience and is made possible by the generative capabilities of the LLM combined with
the conversation context memory.

In general, AI-driven decision making in our chatbot balances autonomy with oversight. The LLM
provides the flexibility and understanding needed for natural interaction, while the system architecture
imposes checks and boundaries to ensure that each decision leads to a valid and safe outcome in the realm
of room booking.

35

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

5 Prototype Implementation and Evaluation

We developed a prototype of the described chatbot system, integrating it with the existing university
scheduling database. The Chatbot Service was implemented in Python, using an API to connect to
an LLM (in our case, a GPT-3.5 and Gemini 1.5 series model) for language understanding and genera-
tion. The management component was implemented as a Java-based backend system using the Spring
framework, facilitating centralized administration and monitoring. The web frontend (Chat UI) was built
with Angular and served via a Node.js/NGINX setup, and the Mattermost bot was implemented in Java
through Mattermost’s bot API. All components were containerized and deployed in a test environment
for evaluation. Example chat transcripts illustrating both a successful and an unsuccessful room booking
interaction are provided in Appendix A.

In testing the prototype, we focused on common booking scenarios to assess the chatbot’s performance.

• Room availability inquiries: Users asking if a room is free available at a certain time. The
chatbot successfully interpreted various phrasings of such questions (e.g., ”I need a lab room next
Tuesday afternoon”) and returned the relevant availability information after querying the backend.

• Booking requests: Users attempting to book a specific room/time. The chatbot could handle
multi-turn conversations to gather missing details (if any), confirm availability, and then reserve the
room. The enforced confirmation step ensured that no booking was made without user approval,
and logs were generated for each booking action for audit purposes.

• Rescheduling and cancellations: Users asking to move an existing class or cancel a booking.
The bot was able to find the referenced booking (with the help of context or by asking which
booking if ambiguous), check alternative options, and carry out the changes. Again, confirmations
and permission checks were used for safety.

• General queries: Users sometimes asked questions about how the system works or other unrelated
queries. The chatbot, guided by its system prompt, provided helpful answers for relevant questions
(e.g., ”How do I specify the room requirements?”) and politely declined or redirected out-of-scope
queries and instead informed the user about the chatbots purpose and capabilities.

These tests demonstrated that the LLM-based approach offers a notably high intent recognition

accuracy. We conducted a structured evaluation of the intent classification across 290 synthetically
generated samples, covering three levels of complexity (simple, moderate, and complex). The LLM
achieved an overall recognition rate of 89%. A visual summary of the evaluation results is shown in
Figure 7. The scripts for implementation and evaluation are accessible in [6].

Figure 7: Evaluation summary of intent recognition performance based on 290 synthetic test samples.

It is important to note that these results should be considered as indicative rather than definitive.

Since we currently lack real user interaction data and our own tests are inherently biased—due to our

36

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

understanding of how to prompt the system to correctly recognize the intent—the evaluation was conducted

using synthetically generated samples. While this enables a controlled and systematic analysis, it may not

fully capture real-world usage patterns. Therefore, although the results are promising, further validation

with real user data is essential to reliably assess the model’s performance under authentic conditions.

The chatbot understood user goals even when they were phrased in colloquial or indirect
ways—something that a traditional rule-based system would likely struggle with. As a result, many
routine booking tasks could be completed without human intervention, indicating a reduction in both
response time and manual effort. For example, what previously involved multiple email exchanges and
hours of processing could now be handled by the chatbot in seconds. The list of available intents is
provided in Table 1.

Intent Name Description

list available rooms Retrieve a list of available rooms based on given time and
capacity constraints.

list events Retrieve all events matching a provided name or number.
list bookings for event Retrieve all timeslots (bookings) associated with a given

event.
book event timeslot Book a classroom for an event during a specified time slot.
book event timeslot online Book an online event with no physical room assignment.
change booking time Reschedule an existing booking to a different time.
change booking room Move an existing event booking to another room.
change booking online status Enable or disable online/hybrid status for an event.
cancel booking Cancel a scheduled event timeslot.
ask for missing info Request missing parameters from user to complete a pend-

ing action.
system capabilities List the full range of supported chatbot actions and com-

mands.
no suiting action Fallback if no matching intent can be determined.

Table 1: Mapping of conversational intents to system-level actions within the Chat-Provider architecture.
Each action is typed and registered, enabling modular handling and extensibility.

Those actions represent the system-internal operations formally exposed to the chatbot service. How-
ever, the actual output presented to the user may differ from the raw retrieved data, as the underlying
LLM is capable of performing additional interpretative or generative tasks—such as prioritizing based on
constraints, reordering items, or providing context-aware summarizations—during the answer formulation
process.

We also compared the two architectural concepts (multi-agent workflow vs. single LLM agent) in
terms of development complexity and performance. The workflow-oriented design, had we implemented
it fully, would have required a substantial amount of knowledge to maintain due to its complex - over-
engineered - architecture. While this solution could enforce strict adherence to procedure (useful for
ensuring every required detail is collected), it became apparent that the flexibility of the single-agent
design allowed us to easily cover more scenarios.

The single-agent LLM was able to dynamically handle situations that were not explicitly programmed,
such as unexpected user questions, turns in conversations, or out-of-order information provision, by relying
on its training. However, the multi-agent concept remains a useful mental model, and it could be beneficial
in future iterations as soon as the environment is increasing its complexity.

During evaluation, we identified several challenges and limitations. One challenge is the LLM’s
tendency to occasionally generate incorrect or ”hallucinated” information, especially if the user query
falls outside the narrow domain of room booking. Our safety net of prompts and validation mitigated
this to an extent, but it underscores the importance of having fail-safes. Another issue is ensuring data
privacy and compliance, as using an AI service may involve sending scheduling data (which could be
sensitive) to the LLM provider; deploying a self-hosted LLM model or an on-premises solution might be

37

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

necessary in the future to address this but it would also require a profound server with good hardware
for which we couldn’t reach out yet. Performance-wise, the response time was generally acceptable for a
prototype (on the order of 1-2 seconds for typical queries), but integrating a large model did come with
increased computation costs. We addressed efficiency by avoiding unnecessary LLM calls and integrating
multiple steps into a single call.

Overall, the prototype evaluation affirmed that an AI-driven chatbot can substantially improve the
efficiency of room booking processes and the realization on how easy it is to build such a system. It also
provided insight into the operational considerations for deploying such a system: the need for continuous
monitoring, the value of human oversight for critical actions, and the importance of aligning the chatbot’s
behavior with institutional policies.

6 Conclusion and Future Work

We have presented an AI-driven chatbot designed to facilitate room booking and scheduling through
natural language conversations. By integrating a large language model into a room booking system, our
prototype can interpret user requests and handle a range of scheduling tasks autonomously, effectively
serving as a first-level support agent. This approach has demonstrated clear benefits: routine administra-
tive tasks can be handled in seconds, user satisfaction can increase due to the convenience of a chat-based
interface, and support staff can be freed from many repetitive queries, allowing them to focus on more
complex tasks.

A key contribution of this work is the system architecture that enables a flexible architecture thanks
to a microservice design. The internal services can be exchanged and upgraded with minimal disruption
as well as for the existing database as soon as the university would upgrade to another system. The
general design of the components is modular, making it feasible to upgrade them (for example, by adding
more use-cases).

Our exploration of different design approaches (multi-agent workflow vs. single-agent LLM) provides
insights into the trade-offs between structured dialogue management and free-form reasoning. While the
single-agent LLM approach proved sufficient and advantageous for our use case, the conceptual exercise of
a multi-agent breakdown helped inform our safety strategies and may inspire hybrid approaches in future
work. One possible direction is to incorporate a rule-based workflow overlay that triggers the dynamical
multi-agent system for unstructured, complex tasks but falls back to a guided single-agent system for
critical and simple transaction steps, thus combining predictability with flexibility.

There are several avenues for future improvement. First, enhancing the robustness and safety of
the chatbot remains paramount. This includes refining the system prompts and constraints to further
reduce the chance of inappropriate or incorrect outputs, implementing more sophisticated monitoring
of the LLM’s decisions, and expanding the library of recognized commands or queries that the chatbot
can handle confidently. Second, scalability and performance optimization will be important if the
system is to be deployed at scale. Techniques such as knowledge distillation or using smaller specialized
models for certain subtasks (e.g., a lightweight date parsing model) could help reduce dependence on the
large model for every interaction, thereby improving response times and lowering costs. Third, conducting
a thorough user study and iterative design based on user feedback would ensure the chatbot’s interactions
remain user-friendly and useful in a real-world setting as well as it could indicate whether a finetuning
of the large language model would be required. Finally, integrating explainability features could be
valuable – for instance, the chatbot could provide brief justifications for its suggestions (drawing from
retrieved data), which would build trust and transparency in an academic environment.

In conclusion, the prototype implementation and evaluation underscore the potential of LLM-powered
chatbots to transform scheduling and other administrative processes. By thoughtfully blending AI ca-
pabilities with system design and human oversight, we can create intelligent support systems that are
not only effective and efficient but also aligned with the requirements for reliability and security in a
university context. We believe that this work lays a strong foundation for deploying AI-driven assistants
in similar domains and will inspire further research and development in making such systems more robust,
accountable, and versatile.

38

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Ethical Considerations

Deploying an AI-based chatbot in university administrative systems does not directly raise disruptive
ethical issues that must be proactively addressed. However, there are some aspects we want to highlight
when dealing with this topic. One significant concern involves potential biases inherent in the utilized
Large Language Model (LLM), which may inadvertently discriminate based on language, origin, or other
characteristics [7].

Safeguards must be implemented to prevent misuse, including attempts at AI exploitation (so-called
“AI-hacking”), ensuring robust validation through input and output filters and stringent model gover-
nance [8].

Social and economic implications of automation, such as job displacement, necessitate careful consid-
eration. Transparent communication and thoughtful management of AI integration are crucial to balance
efficiency gains with societal responsibility, ensuring automation remains proportionate and beneficial [9].

Transparency is another critical ethical aspect; users must explicitly be informed that they are in-
teracting with an AI system, especially when the solution involves external or cloud-based components.
Compliance with European Union ethical guidelines mandates human oversight for critical or sensitive
transactions, reflected in this system through manual approval mechanisms and anomaly detection safe-
guards [10].

Finally, the environmental impact associated with resource-intensive AI technologies, notably energy
consumption by large models, warrants careful consideration. AI deployments should thus be critically
evaluated to ensure that the practical benefits justify their environmental costs, supporting responsible
innovation aligned with sustainability objectives [11].

Acknowledgement: We thank Prof. Dr. Peter Braun, from the Technical University of Applied

Sciences Würzburg-Schweinfurt, for supervising our project.
AI Acknowledgement: This article was drafted and refined using GPT-4 based on an outline containing
related information. The GPT-4 output was reviewed, revised, and enhanced with additional content. It
was then edited for improved readability and active tense, partially using Grammarly and DeeplWrite.
Diagrams and figures were generated using Deepseek-R1 based on self-created mxgraph models.

References

[1] OpenAI, GPT-4 Technical Report, arXiv preprint arXiv:2303.08774, 2023.

[2] S. Yao, et al., ReAct: Synergizing Reasoning and Acting in Language Models, arXiv preprint

arXiv:2210.03629, 2022.

[3] S. Shen, Z. Liu, Y. Li, et al., HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in
Hugging Face, arXiv preprint arXiv:2303.17580, 2023.

[4] S. Fan, X. Cong, Y. Fu, et al., WorkflowLLM: Enhancing Workflow Orchestration Capability of Large
Language Models, arXiv preprint arXiv:2411.05451, 2025.

[5] A. Cockburn, Hexagonal Architecture (Ports and Adapters), HaT Technical Report 2005.02, 2005.

[6] Github Intent Recognition and Evaluation, 2025. Available at: https://github.com/PeterMoehle/
Intent-Recognition-and-Evaluation.

[7] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey on bias and fairness in
machine learning, ACM Computing Surveys, 54(6), pp. 1–35, 2021.

[8] W. Luo, S. Dai, X. Liu, S. Banerjee, H. Sun, M. Chen, C. Xiao, AGrail: A Lifelong Agent Guardrail
with Effective and Adaptive Safety Detection, arXiv preprint arXiv:2502.11448, 2025.

[9] D. Acemoglu, P. Restrepo, Automation and New Tasks: How Technology Displaces and Reinstates
Labor, Journal of Economic Perspectives, vol. 33, pp. 3–30, 2019.

[10] European Commission, Ethics guidelines for trustworthy AI, High-Level Expert Group on Artificial
Intelligence, 2019.

[11] E. Strubell, A. Ganesh, A. McCallum, Energy and policy considerations for deep learning in NLP,
arXiv preprint arXiv:1906.02243, 2019.

39

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Sophie Geisler Peter Möhle

Technical University of Applied Sciences Würzburg Technical University of Applied Sciences Würzburg

Faculty of Computer Science and Business Information

Systems

Faculty of Computer Science and Business Information

Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg Sanderheinrichsleitenweg 20, 97074 Würzburg

Germany Germany

E-mail: sophie.geisler@study.thws.de E-mail: peter.moehle@study.thws.de

Marcel Wernisch Felix Zorn

Technical University of Applied Sciences Würzburg Technical University of Applied Sciences Würzburg

Faculty of Computer Science and Business Information

Systems

Faculty of Computer Science and Business Information

Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg Sanderheinrichsleitenweg 20, 97074 Würzburg

Germany Germany

E-mail: marcel.wernisch@study.thws.de E-mail: felix.zorn@study.thws.de

40

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Appendix A: Example Chat Interactions

This appendix presents two chat-based interaction examples: one resulting in a successful room booking,
and one that ends without completing the task. These illustrate how the chatbot manages information
gathering, confirmation, and fallback strategies.

A.1 Successful Room Booking

User

Hello, I need a room for March 17, 2025, at 10:00 AM for around 80 students.

System

Hi Peter! How long will your event last?

User

From 10:00 to 11:30.

System

The following rooms are available on March 17, 2025, from 10:00 to 11:30:

• H.1.2 (119 seats)

• I.3.24 (32 seats)

Room H.1.2 meets your requirements. Would you like to book it?

User

Yes, please. It’s for the course “Programming II [BWI]”, event number 5000220.

System

Perfect. Room H.1.2 has been successfully booked for “Programming II [BWI]” (event number
5000220) on March 17, 2025, from 10:00 to 11:30. Can i assist you with further requests?

A.2 Unsuccessful Room Booking

User

I’d like to book room H1.3 on July 1 for 80 people for 120 Minutes. Eventnumber 3651100.

System

I‘m so sorry! I couldn‘t find any available rooms that meet your specification for the booking of Room
H1.3 on July 1st, 2025, at 1 AM for 120 minutes with a capacity of 80 people. It seems that there‘s a
conflict in the system for that time slot and room size. Could you perhaps consider alternative dates
or a different room?

41

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

WebXR-Previs: Low-Cost System for Real-Time

Previsualization and Broadcast Graphics

Felix Husac

Abstract

Cinematographic previsualization (previs) and real-time extended reality (XR) graphics are powerful

tools in filmmaking and television broadcasting. These technologies enable the integration of virtual 3D

objects into the real world in real time, and in relation to the viewer’s perspective. In filmmaking, they

are used to explore virtual production sets and plan visual effects sequences. In live broadcasts, they are

used to enhance the production value and engagement of a show. Professional video XR systems rely on

expensive tracking hardware, dedicated cameras, real time rendering servers and complex software

pipelines. Our approach uses readily available consumer hardware: an Android smartphone for spatial

input and a desktop PC for rendering. This paper presents the architecture and implementation of a

flexible, web-based system for real-time 3D visualization applicable to both cinematographic

previsualization and live interactive television graphics. The smartphone camera’s pose data (position

and orientation) is transmitted in real time via WebSockets to a computer. A Three.js application on the

PC receives this data, translating the phone's physical movements into virtual camera control for previs

or real-time 3D graphics for live XR applications. This approach, based on standard web technologies,

aims to lower the barrier to entry by offering powerful real-time visualization in a cost effective manner,

without the need for industry standard equipment.

1 Introduction

Previsualization (Previs) is a technique used across the film, video game and television industries

to visually plan and refine a scene before the sets are built and the actual production begins. It allows

directors, producers, cinematographers and other creatives to experiment with staging, camera angles,

lighting and choreography before live shooting begins. It is mostly used as a cost saving technique,

enabling elaborate 3D and motion sequences to be developed and helping to convey the director’s artistic

vision in the real world. Traditional methods like storyboarding - drawing scenes and camera angles by

hand - and mood boards - collages of pictures and videos - while instrumental in the film industry, are

inefficient in accurately describing complex camera movements, complex scene setups, visual effects,

character movements and they are not interactive, requiring a visual artist to draw each reference frame

by hand [13, 21]. Previs overcomes these inefficiencies by offering dynamic, often real-time rough

visual templates that can be easily adjusted. Previs scenes are usually created inside dedicated 3D

42

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 software. Traditional previs tools can be expensive, oftentimes requiring specialized software, hardware

and knowledgeable staff to operate them. This makes achieving state-of-the-art results difficult without

complex, costly setups that are cumbersome and inconvenient to move or adapt to different

environments. For example, techniques such as infrared motion capture for previs is impossible to do

outside of a controlled studio volume [9, 26].

The pioneers of previs in film include influential directors such as Peter Jackson, James Cameron,

and George Lucas, as well as visual effects companies like Industrial Light & Magic (ILM) founded by

George Lucas. Their work helped shape the development and adoption of previs techniques that later

expanded into television production as hardware and software technologies advanced. The first 3D

computer previs was used for *Star Trek V* (1989) with primitive 3D modeling software [3]. George

Lucas described previs as a process that allowed him to "put scenes together without having to shoot

them, see how they fit in the movie and then, if they work, I can cut them in and actually go out and

shoot them"

[10].

In previs, virtual assets are composited with real actors and backgrounds, allowing directors and

camera operators to preview complex, virtual shots in real time, improving creative freedom and

production efficiency. Compositing is the process by which two or more graphical elements are

combined to create a final image [8].

In this paper, we propose a low cost and minimal setup solution for achieving real time 3D previs,

using only an android smartphone and a computer. The solution detailed here is a web based, novel and

accessible alternative for real-time 3D previs. It makes use of the smartphone’s camera and sensors in

order to track its position in the real world, and relays the spatial coordinates in relation to a designated

target in real time to the computer, which renders the scene from the real life camera perspective. This

allows a real time AR-tracked virtual camera to control the 3D scene viewed on a desktop. Chapter two

will briefly discuss the state-of-the-art techniques used in professional motion capture, 3D software and

previs. The third chapter will detail the features, design and the user interface of the proposed application

and chapter four will focus on the key technologies used to create this solution. The fifth chapter will

briefly walk through a normal use scenario, and the last chapter will conclude this paper and describe

future development opportunities for the proposed solution.

2 State-of-the-art for real-time 3D graphics

"The Mandalorian," a groundbreaking TV series, integrated Unreal Engine 4, a state-of-the-art

game engine, into its StageCraft virtual production system [4, 12]. This enabled the creators to create

real-time immersive virtual sets and plan complex camera work. Unreal Engine 4, developed by Epic

Games and now on its 5th iteration, offers powerful real-time rendering capabilities and has become an

industry standard for virtual production due to its detailed asset management and realistic lighting

features [17]. For the film "Thor," the previs work was led by The Third Floor, a specialized previs

company that used Autodesk Maya and MotionBuilder software [23]. Their proprietary extensions to

these tools advanced the capability of previs by integrating 3D models with camera lens data and green-

screen specifications to streamline shoots. "Ford v Ferrari" is another example where cutting-edge previs

technology played a key role, leveraging Unreal Engine to create fast, interactive visualizations that

helped directors craft high-speed race sequences with accuracy and efficiency [12, 16].

43

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 There are several powerful software options currently used for live 3D graphics generation, both

for previs and virtual production. Unreal Engine 5 is a free to use 3D rendering game engine, with

royalty-based licensing. Its most attractive features are technologies like Lumen and Nanite, features

that provide realistic lighting and enable the use of high-polygon count models in complex scenes. It

requires specialized game engine knowledge to use [28]. Autodesk Maya, in contrast, is subscription-

based and considered expensive, but it is the industry-standard for detailed animation and modeling [1].

Maya has a steeper learning curve due to its complex, professional-grade interface and toolset, but

integrates well with live 3D workflows through plugins and pipeline tools. Blender is a fully free and

open-source 3D modelling software, used for design, animation and even editing, making it the most

financially accessible option. It has a steep learning curve due to its user interface, but it is highly

customizable and growing in popularity with independent creators and smaller studios [15]. Its

integration into live 3D rendering for previs is improving, but it generally pairs with game engines for

final interactive visuals. FrameForge, designed specifically for storyboarding and previs, is a paid

specialized tool with a simpler, easy to use interface, designed for filmmakers new to 3D [34]. However,

it lacks the advanced real-time rendering and detailed 3D modeling of the other three.

Professional camera tracking solutions like Ncam, Mo-Sys, Vicon, and OptiTrack play a critical

role in virtual production by precisely capturing the real camera's position, orientation, and lens

metadata. This data is crucial for rendering the virtual elements from the same perspective as the real-

world camera. Ncam and Mo-Sys offer sophisticated hybrid tracking systems combining optical and

inertial sensors for real-time, low-latency data transmission essential to live LED volume and augmented

reality shoots [18, 22]. Vicon and OptiTrack are known for their high-precision motion capture setups,

using passive or active markers and multiple cameras to achieve ultra-low latency and accuracy in studio

environments [20, 30]. Tracking data collected by these solutions needs to be streamed in real time to

the rendering engine. Free-D and VRPN are industry-standard protocols that are used both in movie

production and live television [35]. In addition to streaming the camera’s position, additional tools are

needed for lens calibration and frame syncing.

Not only film productions, but also videogames and live TV productions are also integrating

techniques such as extended reality (XR) and augmented reality (AR) into their workflow pipelines,

transforming sets and stages into immersive productions. The term virtual reality (VR) encompasses a

wider range of techniques and technologies that allow virtual objects to interact or to be displayed on

top of real world objects. VR fully immerses the user in a digital environment that blocks the real world.

This is often achieved with virtual reality goggles. Augmented reality (AR) overlays digital information

or virtual objects onto the user’s field of view of the real world, and mixed reality (MR) defines a closer

relationship between the real world and the virtual objects, allowing both to interact more deeply.

With the advent of more powerful computers and aided by other technological advancements, such

as live camera encoding, 3D tracking, markers and infrared cameras, classical previs techniques found

their way into live television. After being perfected for use in live scenarios, these modern technologies

found their way back into cinema production, where camera tracking techniques are employed alongside

game and rendering engines such as Unreal Engine 5 to create live, in camera CGI in LED volumes, a

technique that replaces traditional chroma keying and post production visual effects [12]. Virtual

backgrounds are displayed onto led screens and then captured by the camera that also films the actors.

In live television, previs has been integrated into extended reality (XR) and augmented reality (AR)

workflows. The studio floor is the 3D canvas where virtual graphics and assets are combined, staged,

and then composited on top of the real life video feed. This technology enhances the visual experience

44

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 of the viewers, makes the broadcast more engaging and reduces costs by bypassing post production.

Live 3D graphics are mostly used to better explain infographics, events, sports and weather and political

debates [2, 29].

In the recent past, such systems were accessible only to high budget productions. Now, even

singular individuals with relatively low budgets can use software such as Unreal Engine 5 and HTC

Vive trackers to create their own virtual production stages, but the system requires a lot of tweaking and

experience to work [31]. For a professional live environment, such as a broadcast studio, the

technological needs are far more advanced, and the cost of a live 3D system rises quickly. A tv studio

needs encoder boxes for the cameras that can track the position of the camera in real time. Encoders

monitor in real time the FIZ - Focus, Iris, Zoom - and the camera’s exact orientation in space. This data

is used to render the digital elements from the exact point of view of the real life camera. Rendering

servers are needed in order to process the original video feed, position data and graphics in real time,

and infrared detectors or AI enhanced stereoscopic cameras for talent tracking in the studio are also

employed, to ensure that a 3D virtual object will not be generated behind or on top of a tv presenter or

anchor [6, 7, 25].

The proposed app comes as a cheap, simple and effective alternative to the costly studio grade

solutions. It integrates 3D graphics and animations inside real time video, using only an android

smartphone, a laptop and an internet connection. This system circumvents the use of expensive camera

encoders, tracking IR cameras and other expensive legacy hardware, and offers a free, entry level

alternative into live previs for film and tv. The application also integrates a simple WYSIWYG 3D

staging interface for setting up scenes and environments, based on the three.js javascript library and

targeted at users that are inexperienced with traditional 3D modelling and animation software.

3 Application design

The proposed application is split into a phone module and a desktop module, based on the client-

server architecture. The android phone acts as a client, and the PC can act as both server and client. The

server is responsible for creating the socket connection for the incoming data from the tracker, and

establishing subsequent socket connections to multiple viewers and interfaces to broadcast the

deserialized and unpacked telemetry (Fig. 1). Its role is as an orchestrator, receiving the broadcasted

tracking data, interpreting it and sending it along other socket connections to the viewer interfaces. This

ensures that the data is synchronized and interpreted in real time.

45

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 1 - A high-level overview of the information flow between app modules

3.1 Phone tracker

The phone module is developed using simple, legacy web technologies - HTML, CSS and

JavaScript. The module is powered by the WebXR API, first developed by Google and other

collaborators around 2014-2016 [32]. WebXR is traditionally used for creating immersive extended

reality experiences. For this application, WebXR is employed to calculate the real-world position of the

camera and the phone orientation, and relaying that information back to the server via websocket

connection.

The phone module UI is composed of a blank page, that once successfully connected to the server

displays a ”Start AR session” button. Once inside the real time session, the camera view is displayed on

the screen, and after calibrating the plane detection algorithm by moving the phone around, a target

reticle is displayed on top of the camera view. The reticle marks a detected plane surface. The user taps

on the screen to place an orange cylinder on the detected plane at the position of the displayed reticle

that will act as the virtual world’s origin point.

The phone serves as a motion capture device and real time relay. It calculates relative pose in real

time, serializes the data and sends it to the desktop server via websocket to be interpreted, interpolated

and applied to the virtual 3D camera. The phone does not receive any data from the server except a

successful connection flag. This ensures light weight computation on hardware limited devices. The 3D

cylinder placed by the users disappears from the scene in 30 seconds, freeing additional rendering

resources on the phone. Data is streamed un-synced to the server so there is less overhead, in case the

46

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 user has a lower powered device. The movement data is synced to common tv framerate values

serverside, using interpolation and smoothing functions in case the phone can’t keep up or drops

intermediary frames. The device used for the development of this application is only capable of

calculating and streaming position data at ~30fps, and the framerate used for the final render is locked

at a constant 50fps. Telemetry data, such as relative camera position, orientation and tracking data

framerate is displayed in real time in the staging environment on the desktop client.

During use in the studio, the phone is placed directly under the television camera’s lens, aligned

with the FOV (field of view) of the camera. Three.js offers lens frustum and FOV configuration, so

precise lens calibration is possible, if needed.

3.2 Desktop module

For convenience and ease of use, and also due to the separation of concerns principle, the Desktop

module of the application is again divided into two main components. The server side, and the desktop

client side - composed of two separate interfaces, a staging interface and a clean output interface.

3.2.1 Staging interface

The staging interface is a fully fledged, easy to use WYSIWYG 3D interface that allows the user

to create, organize and animate 3D objects in a virtual environment with the help of three.js. Its purpose

is setting up the 3D scene and visualizing the live camera moves tracked by the android phone. The

staging interface allows the user to add primitive objects, load custom 3D models, environment maps

and create display panels for text and still graphics - based on a custom built external canvas editor for

HTML elements. The core UI of the interface uses the lil-gui.js library, a well known library used in

conjunction with three.js, that helps create menus and controls for object properties and enables the

creation of custom menus. The UI is displayed on the left hand side of the screen, while the telemetry

data that is received while the phone tracker is active is displayed on a banner on the top right corner of

the viewport. Lil-gui has controls for dropdown-selection, sliders, buttons and text boxes. Alongside the

usual controls for an object, a custom proprietary waypoint animation control, with multiple motion path

options was added. Keyboard controls for camera movement and orbiting, using standard gaming keys

for intuitive controls, were also integrated. Another notable feature is GLTF model loading for non-

primitive 3D objects sculpted in other 3D software, allowing high quality 3D assets to be imported into

the application. A submenu for texturing primitive three.js meshes with still images was also provided.

HDRI map support has also been added, for a realistic lighting effect over the whole scene, independent

of the lights that three.js already comes with.

For the 3D view, an integrated grid plane serves as the ground of the virtual environment. Hit-

testing was also implemented, so that all 3D objects and lights inside the scene are clickable and

interactable. Once an object is selected, gizmos for rotation, translation and scale are displayed for that

particular object, as well as the side UI updating to display controls for the selected objects. If an object

is difficult to select on screen, the user can opt to select it from a dropdown containing all the objects in

the scene, by its unique name. The interface allows the user to edit transform controls and material

properties, as well as animation controls for rotation and waypoint animations.

The persistence aspect of the desktop client is handled by the browser’s localstorage. Scenes are

saved, restored and deleted within the browser, making the staging interface setup available to the clean

output interface in real time.

47

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The virtual three.js camera displays the 3D scene from the point of view of the tracking device in

real time. Both the staging and the clean output interfaces are linked to the same background logic that

handles syncing and interpolating the tracking data to deliver a constant framerate output on both

interfaces at the same time. Moving the phone in the real world moves the virtual camera on the desktop

client interfaces.

3.2.2 Clean output interface

The clean output is a 1-to-1 copy of the staging environment, without the UI and helper overlays

and lacking user interaction. This offers a clean, unobstructed view of the 3D scene for previs or

recording. It can also load and play animations set in the staging environment automatically. The clean

output interface is integrated into the video capture software that will composit the final image. In this

particular case, OBS (Open Broadcast Studio), where the clean output page is imported as a browser

source on top of the real time video stream from the professional camera in the studio [5].

The proposed solution offers unparalleled flexibility, allowing for multiple client viewer interfaces

to be connected to one server on the same network or device. All viewer interfaces run at the same time,

in separate staging-clean out pairs, allowing different scene setups while being totally independent of

one another, relying only on the same tracking data from the server. It is an all in one application that

combines real time tracking, communication, telemetry, synchronization, 3D scene setup and rendering,

covering the full previs pipeline in a simple and intuitive manner for inexperienced users. It is cost

effective, relying only on an android smartphone and a desktop PC or laptop.

4 Technologies and implementation

The technologies used to implement the application are simple web technologies, already

successfully used in other modern web and mobile applications. Node.js and Express.js were used for

the server side, while HTML, CSS, and JavaScript were used for the clients. The phone tracker also

made use of the WebXR API. This approach was chosen due to the tools being easy to use, having

extensive documentation, offering high integrability and adaptability between the components already

stated above—being all web technologies—and because of previous experience in developing web

applications. The chosen technologies can cover the entire operational pipeline, from backend

processing and API handling to frontend user interaction and augmented reality features from pose

capture, communication, 3D scene setup, display and integration into an existing video streaming and

recording software.

4.1 Client-side

The client side consists of the Desktop viewer interfaces and the phone tracking interface. HTML,

CSS and JavaScript were used to create the basic functionality of the modules, creating the underlying

structure for the necessary libraries to interact with the components and data of the application. The

Socket.io library was used to enable real time bidirectional communication between the tracker and the

server, and broadcast communication between the server and the viewers [24]. The three.js library was

employed for the core 3D functionality of the app, from rendering 3D scenes, to importing models,

lights, materials and virtual camera setup [27]. Lil-gui.js was used as a starting point for creating the

menus and submenus related to objects, lights and the 3D scene as a whole [14]. Display panels inside

the Staging interface had their own separate design interface, based on the html2canvas library, for

48

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 rendering HTML content onto a canvas texture that could be loaded into the virtual scene [12]. The

WebXR Device API was used to access the phone’s camera and motion sensors, and to calculate the

position data. An XRSession can be started by the user after the server acknowledges the connection

between itself and the phone tracker, starting the camera capture and analyzing the sensor data. It uses

this data to make references of the real environment around it and to find solid plane surfaces to place

anchors. Reference spaces are coordinate systems that allow the tracker to interpret physical movement

differently. The “local-floor” reference space provides a stable coordinate system relative to the ground,

allowing virtual content to stay aligned with the physical environment, while the “viewer” reference

space tracks the device’s position in space for accurate pose data [33]. Through hit-testing, the

application performs raycasting from the device into the physical world to detect real surfaces where

virtual objects can be anchored. Anchors are then created at these points to ensure that virtual elements

remain fixed in place relative to the environment, even as the user moves or the device’s pose changes.

The reticle functionality briefly presented in the previous chapter makes use of this technique to align

the virtual environment to the origin point the user chooses by tapping the phone screen in the desired

location on the detected ground plane. The extracted data - position vector and rotation quaternion - is

serialized and sent via the websocket to the server as fast as the phone can process the sensor and camera

inputs and a new measurement is taken.

4.2 Server-side

Node.js is a widely popular JavaScript runtime environment, used for developing server-side web

applications [19]. The Express.js framework is used to serve files and handle HTTP requests made by

different modules inside the application [36]. Socket.IO on the server side manages websocket

connections and orchestrates data exchanges. The server uses HTTPS to ensure secure encrypted

communication because WebXR sessions require a secure context to access sensitive device APIs like

the camera and motion sensors. This security requirement prevents unauthorized interception or

tampering with data streams during augmented reality sessions. The data sent by the tracker is

deserialized, interpreted and sent to the viewer clients who process it in the background, applying

interpolation and smoothing functions. After processing, the positioning data is applied to the virtual

camera, thus mirroring the real life camera’s position, orientation and rotation, and the scene is rendered.

4.3 Challenges faced

Scene management and persistence in staging mode was a crucial aspect of the implementation.

Adding objects, creating unique ids, selecting, modifying object parameters, saving, recalling and

synchronizing object behaviour across both staging and clean output interfaces was a difficult and

complex part of the development stage.

Complex 3D objects are stored as paths to local files inside LocalStorage, while lights, simple

geometries, primitives, lights and animation parameters are stored serialized inside individual JSON

wrappers. Events are fired on each create, update and delete operation inside LocalStorage.

Creating display panels locally inside the application was another important milestone. The aim

was to simplify the process of creating visual elements and remove the need for the user to create the

graphical elements in an external software, export them as a picture and then import them into the scene

as a texture. To meet this need, display panels have their own WYSIWYG editor that can be used similar

to a presentation slide editor. Users can create text fields, insert images, adjust font families, sizes and

colors, and change the z-order of the elements. In its essence, the display panel designer is a div-editor

49

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 with a JSON output for saving the position and relevant parameters of the graphical elements placed on

it. The resulting HTML DIV element is then converted into a canvas with the help of html2canvas

library. The canvas texture is then applied to a plane geometry inside the virtual scene, which can then

be manipulated just as any other 3D object.

5 User flow

In order to use the application, the following steps must be followed. Firstly, the server must be

started. Once the server is running, the tracker and the PC (or PCs if multiple viewers are needed) need

to be connected to the same network. The user then opens the Staging viewer interface and starts building

the 3D scene. The user can import GLTF 3D models, three.js primitives, he can add textures from

pictures, change colors, add lights and shadow casting, and import HDRI maps for realistic

environmental reflections and lighting (Fig. 2). After he is happy with the results, the user saves the

scene and connects the phone tracker by launching the application in a browser page. After the server

acknowledges the connection, the user can start the XR session. The phone needs to be calibrated, so

the user will need to move the camera around and tilt the phone in various angles until the target reticle

appears on screen. The user then aligns the virtual plane of the reticle with the floor plane, and taps the

screen where he would like the virtual scene’s origin point to be. Once he does that, pose data starts

being sent by the phone to the server, the virtual camera inside the viewer interface starts mimicking the

movements of the real world camera, and telemetry is displayed on the staging interface. In 30 seconds,

the visual aids on the phone screen are removed, helping unload computational power and enabling

faster pose processing and transmission. If a previous scene exists, the user can connect the tracker

directly, without needing to first design one. While tracking, the user can keep editing the virtual scene

inside the staging view, with all available functionality. The changes are synced on the clean output

page, and visible in the final composited view inside the video capture software.

Fig. 2 - Staging interface, showing the directional light beam, the translation gizmo for the selected

object (tree) and a part of the lil-gui interface on the left hand side. Top right, the telemetry banner

shows the tracker is not yet connected.

50

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 6 Conclusions and future developments

The app described in this paper comes as an inexpensive alternative to a complete live 3D pipeline,

integrating all features and components necessary for real time previs and television graphics. It supports

multiple processes, ranging from position tracking, data transmission, synchronization, virtual camera

syncing, scene setup, rendering and composition into a final shot, all by using simple, widely available

web technologies. The app is composed of three main components: the tracking module empowered by

the WebXR Device API, the simple express.js server, and the desktop viewer interfaces for staging and

clean output. Current limitations of this version include no advanced physics besides the waypoint

animation system and a basic WYSIWYG editor. Future developments include creating a separate

Controller interface for triggering complex animations, spawning objects in and out of the scene

remotely and configuring saving a loading of show files, to keep created scenes organized. For advanced

animations, integrating a tweening library like GSAP is an important step in making the movement of

the objects feel more professional. For more interesting scenes, or where special effects are needed,

integrating custom shaders and particle generators, such as smoke, fire and rain are another development

requirement. In order for this tool to benefit and positively impact filmmakers, small studios and visual

artists, multi-user collaboration support is another essential feature for further development.

Acknowledgement: This work was supervised by Professor Dana Simian, from “Lucian Blaga”

University of Sibiu.

References.

[1] Autodesk Maya, Official Product page, accessed on 08.11.2025

https://www.autodesk.com/products/maya/overview

[2] Augmented Reality Solutions, Wtvision Official Product page, accessed on 08.11.2025

http://wtvision.com/solutions/augmented-reality

[3] Become a Previs Artist, ESMA Blog post, accessed on 08.11.2025 https://www.esma-

artistique.com/en/metier/become-a-previs-artist/

[4] Behind the Scenes of The Mandalorian: The Role of Unreal Engine in Set Creation, Artemisia

College of Art and Design Blog post, accessed on 08.11.2025

https://www.artemisiacollege.com/blog/mandalorian-unreal-engine-set-creation/

[5] Browser Source, Open Broadcast Studio Documentation page, accessed on 08.11.2025

https://obsproject.com/kb/browser-source

[6] Camera Tracking in 3D and Virtual Production, GarageFarm Blog post, accessed on

08.11.2025 https://garagefarm.net/blog/camera-tracking-in-3d-and-virtual-production

[7] Choosing the right camera tracking system for virtual production, EZtrack Studio Blog post,

accessed on 08.11.2025 https://eztrack.studio/

[8] Compositing – Everything You Need To Know, NFI Blog post, accessed on 08.11.2025

https://www.nfi.edu/compositing/

[9] Discovering Motion Capture Facilities: A Full Guide for Creators, Studios & Devs, Animost,

accessed on 08.10.2025 https://animost.com/industry-updates/motion-capture-facilities/

[10] From Celluloid to Ones and Zeros, Videomaker Blog post, accessed on 08.11.2025

https://www.videomaker.com/article/c18/17043-from-celluloid-to-ones-and-zeros/

51

https://www.autodesk.com/products/maya/overview
http://wtvision.com/solutions/augmented-reality
https://www.esma-artistique.com/en/metier/become-a-previs-artist/
https://www.esma-artistique.com/en/metier/become-a-previs-artist/
https://www.artemisiacollege.com/blog/mandalorian-unreal-engine-set-creation/
https://obsproject.com/kb/browser-source
https://garagefarm.net/blog/camera-tracking-in-3d-and-virtual-production
https://eztrack.studio/
https://www.nfi.edu/compositing/
https://animost.com/industry-updates/motion-capture-facilities/
https://www.videomaker.com/article/c18/17043-from-celluloid-to-ones-and-zeros/

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 [11] Html2canvas, Official Documentation page, accessed on 08.11.2025

https://html2canvas.hertzen.com/documentation

[12] Ian Failes, How Previs Has Gone Real-Time, VFXV Blog post, accessed on 08.11.2025

https://vfxvoice.com/how-previs-has-gone-real-time/

[13] Kyle Deguzman, What is Previs — The Art and Process of Previsualization in Film,

StudioBinder, accessed on 08.11.2025 https://www.studiobinder.com/blog/what-is-previs-

previsualization-in-film/

[14] Lil-gui, Official Documentation page, accessed on 08.11.2025 https://lil-gui.georgealways.com/

[15] Maya vs. Blender: Which One To Choose?, Rocket Brush Studio Blog post, accessed on

08.11.2025 https://rocketbrush.com/blog/maya-vs-blender-which-one-to-choose

[16] Mike Seymour, Ford V Ferrari stylised previs in UE4, FxGuide Blog post, accessed on

08.11.2025 https://www.fxguide.com/fxfeatured/ford-v-ferrari-stylised-previs-in-ue4/

[17] Mike Seymour, Improvements to virtual production in Unreal Engine 4, FxGuide Blog post,

accessed on 08.11.2025 https://www.fxguide.com/fxfeatured/improvements-to-virtual-prodn-in-

ue4/

[18] Mo-Sys, Official Product page, accessed on 08.11.2025 https://www.mo-

sys.com/products/startracker/

[19] Node.js, Official Documentation page, accessed on 08.11.2025 https://nodejs.org/en

[20] Optitrack, Official Product page, accessed on 08.11.2025 https://optitrack3.payloadcms.app/

[21] Previsualization in Film and Media, GarageFarm Blog post, accessed on 08.11.2025

https://garagefarm.net/blog/previsualization-in-film-and-media

[22] Real-Time Camera Tracking On Location, Ncam Tech Blog post, accessed on 08.11.2025

https://www.ncam-tech.com/real-time-camera-tracking-on-location/

[23] Rick DeMott, The Third Floor Provides Previs Might For Thor, AWN, accessed on 08.11.2025

https://www.awn.com/news/third-floor-provides-previs-might-thor

[24] Socket.IO, Official Documentation page, accessed on 08.11.2025 https://socket.io/

[25] Stype, Official Product page, accessed on 08.11.2025 https://stype.tv/

[26] The complete guide to professional motion capture, Rokoko, accessed on 08.11.2025

https://www.rokoko.com/insights/the-complete-guide-to-professional-motion-capture

[27] Three.js, Official Documentation page, accessed on 08.11.2025 https://threejs.org/

[28] Unreal Engine 5, Official Product page, accessed on 08.11.2025

https://www.unrealengine.com/en-US/unreal-engine-5

[29] Virtual and Augmented Reality in Television – TV Management, Fiveable, accessed on

08.11.2025 https://fiveable.me/tv-management/unit-10/virtual-augmented-reality-

television/study-guide/rQWyZBJFDSXmJiE7

[30] Vicon, Official Product page, accessed on 08.11.2025 https://www.vicon.com/

[31] Vive Mars Cam-Track, Official Product page, accessed on 08.11.2025

https://www.mars.vive.com/

[32] WebXR Device API, Official Documentation page, accessed on 08.11.2025

https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API

[33] WebXR Device API: Reference Space and Render Loop, Educative IO Course page, accessed on

08.11.2025 https://www.educative.io/courses/become-proficient-in-webxr-create-xr-

experiences-using-a-frame/webxr-device-api-reference-space-and-render-loop

52

https://html2canvas.hertzen.com/documentation
https://vfxvoice.com/how-previs-has-gone-real-time/
https://www.studiobinder.com/blog/what-is-previs-previsualization-in-film/
https://www.studiobinder.com/blog/what-is-previs-previsualization-in-film/
https://lil-gui.georgealways.com/
https://rocketbrush.com/blog/maya-vs-blender-which-one-to-choose
https://www.fxguide.com/fxfeatured/ford-v-ferrari-stylised-previs-in-ue4/
https://www.fxguide.com/fxfeatured/improvements-to-virtual-prodn-in-ue4/
https://www.fxguide.com/fxfeatured/improvements-to-virtual-prodn-in-ue4/
https://www.mo-sys.com/products/startracker/
https://www.mo-sys.com/products/startracker/
https://nodejs.org/en
https://optitrack3.payloadcms.app/
https://garagefarm.net/blog/previsualization-in-film-and-media
https://www.ncam-tech.com/real-time-camera-tracking-on-location/
https://www.awn.com/news/third-floor-provides-previs-might-thor
https://socket.io/
https://stype.tv/
https://www.rokoko.com/insights/the-complete-guide-to-professional-motion-capture
https://threejs.org/
https://www.unrealengine.com/en-US/unreal-engine-5
https://fiveable.me/tv-management/unit-10/virtual-augmented-reality-television/study-guide/rQWyZBJFDSXmJiE7
https://fiveable.me/tv-management/unit-10/virtual-augmented-reality-television/study-guide/rQWyZBJFDSXmJiE7
https://www.vicon.com/
https://www.mars.vive.com/
https://developer.mozilla.org/en-US/docs/Web/API/WebXR_Device_API
https://www.educative.io/courses/become-proficient-in-webxr-create-xr-experiences-using-a-frame/webxr-device-api-reference-space-and-render-loop
https://www.educative.io/courses/become-proficient-in-webxr-create-xr-experiences-using-a-frame/webxr-device-api-reference-space-and-render-loop

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 [34] What Makes FrameForge so Revolutionary?, StoryboardSmarter Official Product page,

accessed on 08.11.2025 https://www.storyboardsmarter.com/frameforge-features-and-benefits

[35] What is FreeD and how to use it with your PTZ cameras, PTZ Optics Blog post, accessed on

08.11.2025 https://ptzoptics.com/freed/

[36] Express.js, Official Documentation page, accessed on 08.11.2025 https://expressjs.com/

Felix Husac

“Lucian Blaga” University of Sibiu

Department of Mathematics and

Informatics

5-7 Dr. Ratiu Str, Sibiu 550012

ROMANIA

 E-mail: felix.husac@ulbsibiu.ro

53

https://www.storyboardsmarter.com/frameforge-features-and-benefits
https://ptzoptics.com/freed/
https://expressjs.com/

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Implementation and Development of a Rated Voting System

Giorgiana-Maria Marangoci, Alex-Andrei Rîpan, Stefan-Ioan Istina

Abstract

 A voting system is essential when groups need to make fair, inclusive, and transparent decisions.

It promotes order, equality, and cooperation — not just in governments, but in everyday human

interactions. Traditional methods such as Plurality voting, Majority voting, Proportional representation

may have restrictions that lead to lose of trust and biased fairness on the electoral process. This paper

explores a less used method, the Rated Voting System, where voters assign scores to candidates,

providing a more refined selection when compared to classical voting systems. We have chosen to

highlight the challenges of Plurality and Rating systems, by presenting their characteristics and

differences. In order to approach the discussed issues, we have created an application that ranks the

candidates using the Plurality voting system and also the Rated Voting System. Our goal was to make

use of digital technology in order to cast and count votes when using these two systems.

Keywords: Rated Voting System, Plurality Voting System, e-voting

1 Introduction

 At a general level, the importance of a voting system goes beyond politics — it plays a vital

role in group decision-making, fair representation, and collective responsibility in many areas of

life. For example, in politics, voting is a way for citizens to get involved in the democratic process

by having the opportunity to make personal decisions and to affirm their trust in the democratic

system [1]. Communities use referendums to vote on local projects, events or laws – bypassing

the elected representatives, and therefore directly expressing the power of its members.

Organizations use votes to elect board members or to set strategic goals. Universities and schools

also use voting systems in order to elect student leaders or to decide on optional classes.

While voting is essential for a functioning democracy, traditional voting systems face

numerous challenges. The problems range from technological and logistical difficulties to

manipulation of the electoral process. For example, manual counting is prone to errors, which in

close elections could affect the outcome; people with disabilities have limited access; ballots

transportation may be difficult in conflict areas. Current voting systems also face electoral fraud,

as presented in [2]: vote manipulation leads to diminishing the supposed benefits of democratic

governance.

 Rated Voting System is an electoral model in which participants assign grades or scores to

candidates, instead of choosing just one. This system allows for a more refined set of voter

preferences, reducing the risk of encountering various events such as strategic voting. This

method rooted in the system proposed by the French mathematician and naval engineer Jean-

Charles de Borda. He described a voting system related to the total ranking of individual

preferences at the time of choice [3], which is one of the ranked methods. Let's consider n

54

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 candidates; the method awards: n-1 points for the first placed, n-2 points for the second placed

and so on, the last placed receiving 0 points [4]. Even Jean-Charles de Borda confessed that "My

system is only intended for honest men", because if the strategic vote were to become a habit, the

final results of the voters would no longer reflect the benevolent truth of the citizen [3].

 This paper is structured as follows: Section 2 presents several voting systems currently used;

Section 3 describes the proposed application for e-voting, and Section 4 concludes the work.

2 Overview of Voting Systems

In this section we present some voting systems currently used.

2.1 Plurality vote

A plurality vote (also called "first-past-the-post") is a voting system where each voter can

select only one option, and the option with the most votes wins, even if it does not have a majority

(more than 50%). It is a common way to vote, simple and fast, but can lead to strategic vote

(people can vote against the option rather than for the desired option). [5]

2.2 Majority vote

A majority vote means an option must receive more than 50% of the total votes to win. If no

option reaches a majority, a second round or vote transfer system is often used. This system

ensures that the winning option has more than half support, but it may need additional rounds. [5]

 2.3 Proportional Vote

The proportional voting system is used when members of multiple groups must make a

collective decision when electing a unique board [6]. It is used in corporate governance, academic

and professional organizations, NGOs and unions. The voting standards are majority (more than

half of board members), supermajority (two-thirds or three-fourths approval), and unanimous

consent (everyone must be in favor of the decision). This system allows minority representation,

encourages different perspectives in board decisions, and reduces the risk of group control.

2.4 Ranked choice voting

The process that allows voters to rank candidates for a particular position based on their

preferences is called ranked choice voting. For example, a voter has the following preferences:

option B is in the first position, followed by C, D and A. If none of the options get a majority of

the votes in the first round, and option B has the fewest votes, it is automatically eliminated. All

the votes of option B are transferred to the second opinion of the voter, in this case being option

C. This step is repeated until one of the options obtains a majority of the votes [7]. The Best

Picture award from the Academy of Motion Picture Art (a.k.a. the Oscar award) is granted using

this type of vote [8].

2.5 Rated Voting System

The rated voting system is a method that allows voters to express their preferences in a more

nuanced way compared to traditional voting methods. Without selecting a set of options, the voter

expresses personal approval or gives a score to each option [9].

Rated voting system has several variants, each with specific features and mechanisms as

voters express their support or preference for options, which offers a more interesting alternative

to traditional voting methods. The systems are designed to reflect a wide range of opinions and

allow a more accurate, detailed and representative choice, as the voter expresses his or her degree

of support.

55

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 2.5.1 Score (Range) Voting

Score (Range) voting is a system in which voters evaluate options on a scale, and the option

with the highest total score wins. A common scale can be from 0 to 10, where 0 represents total

disapproval and 10 indicates total approval. Other used scale is from -10 to +10, in which

negative scores express disapproval, and positive scores indicate support [10]. Score voting is

usually used in academic peer review panels for grant applications or paper submissions at

journals and conferences.

2.5.2 Approval Voting

This system allows voters to express their support for multiple options in the voting process,

which means they are not limited to polling a single option or ranking them; the option with the

most approvals wins [9]. It is used in online pools in gaming communities, by corporate

governance, or by academic and professional organizations for electing board members,

committee members, or conference topics (for example, for electing the IEEE boards [11]).

2.5.3 Benefits of the rated voting system

One important advantage is the reduction in the disclosure of votes, because participants can

support more options. It allows voters to communicate their different levels of support for

multiple variants, providing a more in-depth representation of their preferences. Also, people tend

to be more accustomed to assigning scores or grades (like for product reviews) than constructing

rigid rankings among a number of options [12].

2.5.4 Disadvantages of the rated voting system

The system can be complicated for the elderly or less technologically-inclined people. Yet,

civic training is known to be crucial in ensuring proper understanding and adoption across all

levels of age and experience. In terms of risk of strategic inflation of scores (e.g., voters giving

uniformly high scores to favored candidates and low scores to all others), some authors propose

the median as the aggregation method, rather than the average, to minimize the influence of high

or manipulative ratings. This approach makes the system significantly less vulnerable to strategic

voting when compared to other methods [13].

3 DualVote: Hybridizing the Voting Process with New

Technologies

Like many other current social transformations, the voting process is an area where the

technological transition faces challenges. One of the most significant difficulties is to guarantee to

anyone fair access to the voting process and outcomes. To solve one of the problems with the

current voting system, we created DualVote. This app uses both the traditional method of

selecting a single option, and a method of assigning scores to several options, which makes it easy

and flexible for everyone. This app is not just a technological tool; by comparing its results it can

be used in designing new selecting methods in social life, adapted to specific contexts.

This application was designed with the main goal of exploring two different voting systems,

and can be used in any voting process, not only political. We have chosen to implement an

imaginary political vote mainly because it is a very common situation in the citizens’ life, with

broad implications at both local and national levels.

 3.1 Frontend

In order to offer a modern and easy-to-use solution, we have designed a voting application

that can be used directly from personal mobile devices. The application was implemented with

56

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Flutter framework, based on the Dart programming file. The motivation for choosing this

framework comes from several essential factors:

• It allowed us to develop a single application that runs on both the Android and iOS

operating systems, without having to separately write the code for each operating system.

• The unified interface and performance gave us a consistent visual and functional

experience on both platforms.

In the development of the front-end part, the application was designed to integrate and support

the Plurality voting system as well as the Rated voting system, offering to the user a unified and

intuitive experience. Regarding the importance of security in the digital electoral process, the

authentication mechanism implemented was designed to provide a high degree of protection,

reducing the risks associated with unauthorized access and guaranteeing data integrity.

In order to authenticate, users must go through a multi-factor security system that leads to the

elimination of the use of accounts by unauthorized persons, combining three essential elements:

an official email address that is issued by the managing organization, scanning an NFC card and

entering a personal password. For an extra layer of protection, we have also implemented the two-

step authentication (2FA) system, requiring the user not only to enter the password but also to

scan the NFC card. By performing this action, a unique verification code will be generated, which

must be entered for the final confirmation of identity and to combat cyber-attacks, such as

phishing. Through these advanced authentication and security measures, the app provides a safe

and efficient user environment, ensuring both data protection and compliance with the strict

requirements imposed by a modern digital voting system (Fig. 1).

Fig. 1 - Authentication system

In the next step, the Plurality system is used, which allows the election of a single option. In the

context of this system, candidates are displayed in an intuitive interface, which helps the user to

express his vote by selecting the desired candidate. There is also the possibility of canceling the vote:

if the user decides not to express his electoral preference, but to prevent accidental cancellations, the

system includes a warning mechanism by displaying a message, asking the user to confirm the

decision. Only after the explicit acceptance of the annulment, the vote is invalidated and properly

recorded (Fig. 2). The difference between a white vote and a canceled vote is that the white vote is

57

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 validated but does not influence the results of the elections, while the annulled vote is not validated

[14].

Fig. 2- Cancelled vote warning message for the candidate Ion Ionescu

The rated voting system, used as an alternative option, allows the citizens to express their

preference by giving each candidate a score on a scale from -10 to 10. It allows for a more

nuanced evaluation, reflecting both support and opposition. The vote is validated only if some

conditions are verified:

• each candidate must receive a score, which guarantees that all participants have been

evaluated;

• one and only one of the candidates has to obtain the highest score, which expresses the

major preference of the user.

By fulfilling these conditions, the user can confirm the vote, completing the electoral process.

To prevent omissions and errors, the application will display warning messages if the user does

not assign a score to each candidate, or he wants to cancel the vote, thus generating an accurate,

transparent and controlled electoral process (Fig. 3).

Fig. 3- Rated voting system interface

58

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 In order to simulate the electoral process and present a possible result we included in our voting

application a code in the Python programming language. We generated 300 votes on both voting

systems (majority and rated). We used the http://random.org/ website to generate the 300 two-types

votes, which were saved in a text file. By using the Python program, we read this data from the text

file and calculated the results for both voting system, which provided a simulation of a possible

outcome of the electoral process. The Python code and the text files are available in the GitHub

repository [15].

 Fig. 4 presents a first simulation. The results of the votes through the two voting systems

highlight the distribution of the scores obtained by each candidate. By processing the text file, we

found that two of the candidates obtained an equal highest score through the plurality voting system.

Given the situation, a message will be generated in the terminal of the code informing us that a second

round will take place between the two candidates with the highest score, in order to determine the final

winner, ensuring the transparency of the electoral process. This was an interesting case, showing the

more fine-grained candidates’ evaluation using the rated voting method. This second voting method

did not need a second round.

Fig. 4 - Status of results with the same score

 By processing the results of a second simulation, we obtained clear results from both voting

systems, as only one winner was designated. In Fig. 5, the results are represented graphically, but also

at the end of the code where the situation is detailed, highlighting the final ranking of the candidates

based on the scores obtained. Thus, the results confirm the validity of the electoral process and the

correct selection of the winner following the evaluation through both voting systems.

59

http://random.org/%20

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 5 - Status of results with sharp and correct results

 3.2 Backend

 The Python programming language helped us in the development of the backend, due to its

flexibility and efficiency in managing database connections and data manipulation. We used the

pyodbc module, which allows the application to be connected to the SQL database and linked to

the tables that store the candidates' data. With the help of this module, we managed to build and

control the SQL cursors that execute the commands insert, update or extract data from tables.

Our database is built using two tables, “Voters” that has the authentication information, and

the "Candidates" table that contains the details of the candidates registered in the elections. In Fig.

6, it is represented in the form of a tabular structure in a SQL interface. The displayed table is

used to analyze the results and to determine the winner.

Fig. 6 - The "Candidates" table in the SQL database

In order to be able to unify the frontend with the backend, we opted to use Flask, an

affordable framework for developing APIs in Python. This framework easily creates a RESTful

API, through which the frontend application, made in Flutter, accesses candidates’ data and

transmits user votes. The API helps us maintain the connection between the frontend and the

backend by managing the application logic and data storage. Through these technologies, the app

60

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 models a fast, efficient and flexible component able to adapt to the requirements of a modern

electronic voting application.

 3.3 Numerical hands-on simulations

A simple example showing the differences between the two approaches uses a pool of 12

voters, and three candidates: A represents the Left wing, B represents the Center, and C represents

the Right wing. We suppose that A has 5 voters, B has 4 voters, and C has 3 voters in the plurality

voting system. In the rated system, each voter gives 10 to the preferred candidate, and the

following rules apply:

• the voters which prefer A, between B and C always prefer B;

• the voters which prefer B, slightly prefer A;

• the voters which prefer C, between A and B always prefer B.

We imagined two cases:

• the moderate case, where the rates have moderate values,

• the extreme case, where the rates have extreme values.

The results are presented in Fig. 7, showing again the coarse-grained values for the plurality

system approach, when compared against the fined-grained results for the rated voting system. In

both cases, for the first system, candidate A clearly wins. But, for the second system, in both

cases, candidate B wins. When moderate rates are given, there is a very small difference between

A and B. But when the voters express a very sharp set of opinions, candidate B wins by far. In our

opinion, this shows how the evaluation of the whole set of candidates could influence the results,

not only the first personal choices of the voters.

a) moderate rates b) extreme rates

Fig. 7 – The results for the rated system, two simulations: a) moderate, b) extreme

3.4 Challenges in implementing e-voting

The difficulties manifested by online voting can be classified in: technical issues, operational

issues, privacy concerns, and human-related challenges.

Technical problems could arise from hardware crashes (therefore, the voting process is

interrupted), authentication aspects (to verify the voter without breaching the owner’s privacy can

be a difficult process), or security risks (inherent vulnerabilities when data transfer take place

using the internet). Operational problems could manifest when voting platforms are not designed

to accommodate people with diverse acting restrictions (for example visual impaired people), or

61

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 when people do not understand how the voting results are computed (leading to social mistrust).

Data protection (identities, votes) is a complex problem, which must be carefully addressed.

Traceability of a casted vote may be difficult, as the vote must remain anonymous. Human-related

issues refer to uneven access to digital devices, or reliable internet; low level of digital literacy

could restrict vote access of large groups of people.

Examples of widely used online voting applications are: ElectionBuddy [16], Polyas [17],

Voteer [18], OpaVote [19], Election Runner [20], Simply Voting [21].

4 Conclusions and Future Work

This paper does not intend to rank two voting systems. This is an article that wants to give a

spotlight to one less known voting system and bring it to researchers’ attention. Depending on the

situation, the voting system that is more efficient and gives the best benefits should be used. Each

voting system has its own weaknesses and strengths.

 Because the application is a prototype that was tested in a controlled environment, the

connection between mobile app and server did not require to be secured. Future version of the

application will have better encryption modules and the authentication in API will be made using

and API key. This facility will ensure that a user cannot vote more than one time. In the case

when the login is from a different device, the user will receive a warning email saying that the

account was accessed from a different device and she/he will have to confirm the identity.

The mobile application can be further developed by extending its functionality, starting with

the authentication system that can be improved by adding different features such as: biometric

authentication or fingerprint authentication that would provide more thorough protection to avoid

fraud. Inclusiveness is an important aspect: people with disabilities need an accessible solution, to

have the chance to participate in elections. By combining technological innovation with

transparency and citizenship, we believe that adjusting social systems to current and future social

needs will bring fairer and more efficient societies.

Acknowledgement: This work was supervised by Assoc. Prof. Crișan Gloria Cerasela, from

Department of Mathematics & Informatics, Vasile Alecsandri University of Bacău , Romania.

The research was funded by the Ministry of Education, through the National Council for the

Financing of Higher Education, Romania, grant number CNFIS-FDI-2025-F-0483: Improving the

quality of RDI activities at "Vasile Alecsandri" University of Bacău through national and

international cooperation (acronym: Connect-UBc).

References

[1] Douglas E. Schoen - The Power of Voting: Advancing Equity and Championing Democracy, William

Morrow, 2007

[2] R. Michael Alvarez, Thad E. Hall, Susan D. Hyde - Election Fraud: Detecting and Deterring Electoral

Manipulation, Brookings Institution Press, 2009

[3] Emerson, P. - The original Borda count and partial voting, Social Choice and Welfare 40, 353–358

(2013).

[4] Cheng, Kung-E, Fadi P. Deek. - Voting Methods and Information Exchange in Group Support Systems,

Americas Conference on Information Systems (2006).

[5] Encyclopedia Britannica – Plurality and majority systems Encyclopedia Britannica (accessed Oct 2025)

[6] Encyclopedia Britannica - Proportional Representation Voting Systems.

https://www.britannica.com/topic/proportional-representation (accessed April 2025)

[7] The University of Chicago, Ranked choice voting https://effectivegov.uchicago.edu/primers/ranked -

choice-voting (accessed April 2025)

62

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

[8] AMPA - Voting procedures - https://www.oscars.org/oscars/voting (accessed Oct 2025)

[9] Brams, S. J., Fishburn, P. C. - Approval voting. American Political Science Review, 72(3), 831–847, (1978)

[10] Smith, W.D. - The case for score voting. Constitutional Political Economy 34, 297–309 (2023).

[11] IEEE Annual Election Voting Eligibility - https://www.ieee.org/about/corporate/election/eligibility

(accessed Oct 2025)

[12] Swagato Chatterjee - Explaining customer ratings and recommendations by combining qualitative and

quantitative user generated contents, Decision Support Systems,119,14-22, 2019

[13] Balinski, Michel, Laraki, Rida. Majority Judgment: Measuring, Ranking, and Electing. MIT Press,

2011

[14] Alvarez, R. Michael; Kiewiet, D. Roderick; Núñez, Lucas - A Taxonomy of Protest Voting. Annual

Review of Political Science. 21: 135–154. 2018

[15] Application and data GitHub Repository https://github.com/Giorgiana18/Rated-Voting-System-and-the-

future-of-voting-in-Romania (accessed April 2025)

[16] ElectionBuddy platform - https://electionbuddy.com (accessed Oct 2025)

[17] Polyas platform - https://www.polyas.com (accessed Oct 2025)

[18] Voteer platform - https://www.voteer.com/ (accessed Oct 2025)

[19] OpaVote platform - https://opavote.com (accessed Oct 2025)

[20] Election Runner platform - https://electionrunner.com/ (accessed Oct 2025)

[21] Simply Voting platform - https://www.simplyvoting.com accessed Oct 2025)

Giorgiana-Maria MARANGOCI

Vasile Alecsandri University of Bacău

Department of Mathematics & Informatics

Calea Mărășești, nr. 157, Bacău, 600115

ROMANIA

E-mail: giorgianamarangoci@gmail.com

Alex-Andrei RÎPAN

Vasile Alecsandri University of Bacău

Department of Mathematics &

Informatics Calea Mărășești, nr. 157,

Bacău, 600115 ROMANIA

E-mail: darkdragondd100@gmail.com

Ștefan-Ioan ISTINA

Vasile Alecsandri University of Bacău

Department of Mathematics &

Informatics Calea Mărășești, nr. 157,

Bacău, 600115 ROMANIA

E-mail: istinastefanioan@gmail.com

63

https://github.com/Giorgiana18/Rated-Voting-System-and-the-future-of-voting-in-Romania
https://github.com/Giorgiana18/Rated-Voting-System-and-the-future-of-voting-in-Romania
https://electionbuddy.com/
https://www.polyas.com/
https://www.voteer.com/
https://opavote.com/
https://electionrunner.com/
https://www.simplyvoting.com/

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

SmartGarden: An Economical IoT-Enabled System for

Indoor Plant Surveillance and Irrigation

Alexandra Onose

Abstract
This paper presents SmartGarden, an economical and adaptable IoT-based technology intended for

real-time monitoring and automated irrigation of indoor plants. The system integrates open-source

microcontrollers, ambient sensors, and a locally managed Flutter-based mobile application. In contrast

to current commercial solutions that frequently depend on cloud infrastructure and proprietary

ecosystems, SmartGarden prioritizes user autonomy, offline functionality, and straightforward

customization. The system's novelty is in its open, scalable architecture, enabling both novice and

experienced users to customize and enhance it based on particular plant care needs. The prototype was

evaluated in real-world situations and shown dependable performance, affirming its potential for

practical and instructional applications.

1 Introduction

Houseplants form an important organic element in indoor environments, serving its aesthetic

purpose while playing an important role in improving well-being and mental comfort. They provide

many advantages: energy, stability, and serenity in life. However, while many people may keep one or

more of these plants in their homes, caring for them indoors can prove more challenging than expected.

Most problems like under-watering, over-watering, or incorrect location come from the lack of timely

and plant-specific information. According to a survey from the National Gardening Association

conducted in 2020, nearly 50 percent of first-time plant owners kill at least one plant in their first year

because they did not understand their needs or how to care for them.

To overcome these issues, we introduced SmartGarden: an open-source, low-cost platform that does

not require horticultural knowledge and delivers moisture and nutrients without the need for subscription

services. The main goal is to help the novice and the experts in the measuring and caring process of their

plants—by using manual irrigation, automated irrigation, and real-time monitoring of environmental

data. The system is scalable, from small potted plants to larger indoor gardens, and the adjustable settings

supply it with reliability and flexibility.

SmartGarden benefits from its open and modular nature, which distinguishes it from similar

solutions. It is agnostic to cloud services or proprietary ecosystems and relies entirely on on-premise

hardware and software. The entire system consists of a set of wireless modules that communicate

directly with the Wi-Fi through a lightweight mobile application and can monitor each plant. Users of

this app can monitor temperature, humidity, and soil moisture levels; set alerts; and configure watering

64

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 options. Its hardware is commonly available, cheap, and easy to assemble, which makes the system

approachable for students, hobbyists, beginners, and individuals seeking to broaden their horticultural

experience and their horticultural scope.

At this point, commercial smart plant care systems are widely available but are limited to single

plants, or their applications are limited to polluting agricultural technologies like hydroponics. In

contrast, the SmartGarden system is a middle-ground approach, a plug-and-play, reusable offering that

holds the advantages of existing tools without sacrificing autonomy, cost, and education/learning. It

effectively bridges the gap between entry-level consumer devices and complex industrial systems, at the

same time enabling users to hone their personal and intellectual skills with horticulture.

This paper details the development and testing of the SmartGarden system, an offline, low-cost

solution for indoor plant monitoring and irrigation. Unlike many commercial alternatives, SmartGarden

operates entirely without cloud services, prioritizing data privacy and full user control. The platform is

built using accessible, open-source hardware and software, and its modular design allows users to easily

expand it—for instance, by adding AI-based diagnostics or new types of environmental sensors. These

aspects together define the project's core value: a flexible, decentralized, and educational tool that

combines affordability with real-world applicability and technical relevance.

The paper is organized as follows: In Section 2, the hardware architecture and circuit design are

described. In Section 3, the software components (firmware and mobile application) are introduced; In

Section 4, the experimental validation and results are shown. Finally, in Section 5, findings and future

development directions are summarized.

2 Related Work

Smart irrigation and plant monitoring systems have been widely explored in both academic and

maker communities, leveraging IoT technologies for real-time data acquisition, automation, and remote

control.

Wu et al. [1] designed an intelligent flowerpot that integrates soil moisture sensing and automatic

watering. While user-friendly, their solution is tied to a cloud-based infrastructure and supports a single-

plant setup, limiting its scalability and privacy. Zhang et al. [3] proposed a more complex system for

precision agriculture using wireless sensor networks, suitable for large-scale outdoor farming rather than

household applications.

Ahmed et al. [2] presented a multi-sensor smart plant monitoring system using Arduino and Wi-Fi

modules. Their setup demonstrates strong environmental monitoring capabilities but lacks modular

expansion features. In contrast, SmartGarden supports flexible scaling and localized control for each

plant.

Piyare [4] explored ubiquitous home control using smartphones and Android-based IoT integration,

illustrating the early potential of mobile interfaces in home automation. Our project builds on similar

principles but emphasizes offline-first functionality and platform independence.

Choudhari et al. [5] implemented an IoT-based smart gardening system that collects environmental

data and controls irrigation. However, their solution lacks detailed modular configuration per plant and

focuses more on general automation. Similarly, Zhang et al. [6] introduced a smart irrigation system

using LoRa and edge computing for farms. While innovative, it introduces unnecessary complexity for

small indoor setups.

Agarwal et al. [7] advanced the field by incorporating large language models into mobile apps for

human-plant interaction, demonstrating potential in diagnostics and interactivity. Risheh et al. [8]

proposed using transfer learning with neural networks for smart irrigation—a direction relevant for

future iterations of SmartGarden, especially in AI-enhanced diagnostics, as discussed in section 2.4.5.

65

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Foundational insights into IoT development are presented by Bahga and Madisetti [9], offering a

practical approach to system design that influenced the modularity of SmartGarden. Margolis [10] and

Barnett et al. [13] provide in-depth coverage of Arduino programming, contributing to the firmware

development logic in our system.

Broader perspectives on IoT are outlined in Giusto et al. [11] and Xu et al. [12], who highlight the

importance of decentralization and security in industrial systems. Our project embraces these principles

by prioritizing local data ownership and avoiding cloud reliance. Design best practices from McEwen

and Cassimally [14] also informed the physical and software integration aspects of SmartGarden,

emphasizing maintainability and modularity.

In conclusion, existing solutions often rely on cloud connectivity [1,2,5], complex hardware [3,6],

or high computational resources [7,8]. In contrast, SmartGarden bridges the gap between basic maker

projects and complex industrial systems, offering a scalable, user-friendly, and fully offline alternative

tailored for educational and indoor use.

3 System Design

The SmartGarden system is built around a handful of simple, affordable components that are easy

to find and even easier to work with. Everything is designed to do just what is needed: track plant

conditions and control watering—without adding unnecessary complexity. The setup is low-power, easy

to tweak, and can be expanded at any time. Whether monitoring a single plant or an entire indoor

collection, the system makes it easy to connect multiple modules over the same Wi-Fi network and scale

up as you go.

3.1 Hardware Components

At the heart of the SmartGarden system is a simple collection of low-cost, easy-to-find electronics,

carefully chosen to manage the basic tasks of monitoring and watering indoor plants. The design is

meant to be as straightforward and energy-efficient as possible while staying flexible enough to grow

with the user—whether they are caring for a single plant or expanding to a full indoor garden connected

over Wi-Fi.

The main “brain” of the system is the Arduino Pro Mini, running at 3.3V. This compact

microcontroller coordinates all local operations, from reading sensors to deciding when the plant needs

water. It connects directly to two key environmental sensors: one for air and one for soil. The first is the

SHT21, mounted on a GY-21 breakout board, which tracks temperature and humidity using I²C

communication. The second is a resistive soil moisture sensor, which sends analog signals that the

Arduino translates into soil moisture levels—essential for deciding when to water.

To get data from the hardware to the user (and vice versa), the system uses the ESP-01 module,

powered by the ESP8266 chip. It creates a local Wi-Fi connection that lets the SmartGarden system talk

to the mobile app in real time. Whether it is sending sensor readings or receiving a command to turn on

the water pump, this tiny Wi-Fi module keeps everything coordinated.

Since some parts of the system need more power than others, especially the pump, the design

includes a voltage step-up using an MT3608 DC-DC converter. This allows a regular USB power source

or even a battery pack to power the entire system reliably, raising lower voltages to the 5V needed by

more demanding components.

The pump itself is a compact unit that runs on 5 to 12 volts, more than enough to keep houseplants

hydrated. It is controlled by an IRF520 MOSFET relay module, which safely switches the pump on and

66

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 off based on commands from the Arduino. This keeps the watering process smooth and completely

automated—or manual if the user prefers.

For quick testing or temporary setups, everything can be wired on a standard breadboard. But for

something more permanent or polished, the system can be soldered onto a custom PCB. Both options

work well, depending on how much flexibility or durability is needed. Diagrams of the physical layout

and wiring can be seen in Fig. 1 and Fig. 2.

Figure 1. Physical wire configuration of the Smart Garden prototype.

Figure 2. Diagram illustrating the electrical connections of all components.

3.2 Circuit Design

The system's wiring is uncomplicated and follows a straightforward logical architecture, as shown

in Figure 3. The Arduino Pro Mini microcontroller serves as the central unit, receiving analog and digital

inputs from a soil moisture sensor, a temperature sensor, and a humidity sensor. It processes the collected

data and decides whether to activate the water pump through a relay module, depending on the plant's

needs. The relay acts as a switch between the pump and the power source, allowing safe control via the

Arduino. Water is delivered from a tank directly to the plant through this mechanism. Communication

with a mobile application is established through the ESP-01 wireless module, which provides

connectivity via Wi-Fi. This allows users to monitor real-time sensor data and control the irrigation

process remotely. The overall circuit design ensures energy efficiency, modularity, and compatibility

with low-cost components suitable for home automation applications.

67

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 3. Logical architecture of the Smart Garden system.

3.3 Supported Configuration

The SmartGarden system is designed to manage multiple plant modules at once, with each one

equipped with its own set of sensors—measuring soil moisture, air temperature, humidity, and light—

along with a resolute watering controller. All these modules connect to the same Wi-Fi network, so

everything communicates through a single mobile app using the ESP-01 module as the central hub.

Each plant gets its own unique ID, which the app uses to keep track of them individually. That way,

you can monitor and manage several plants at the same time, even if they have different care needs.

Whether you are looking after a succulent that barely needs water or a tropical plant that thrives in

humidity, each one can run on his own schedule.

The system supports both manual and automatic watering modes, and it collects real-time sensory

data from each plant so you can always see how things are going. If you want to expand, you can simply

add more modules without changing anything in the core system—if they are on the same network, they

will integrate smoothly. There are also plans to support grouped irrigation setups in the future, where

several plants can share the same water source while still being watered differently.

Thanks to this flexibility, SmartGarden works just as well for someone caring for a few houseplants

as it does for more ambitious indoor gardening projects.

3.4 Enhancements for Accuracy and Reliability

In addition to core system functionality, several design decisions were made to improve the accuracy,

reliability, and long-term usability of the SmartGarden platform. This section highlights essential

considerations such as sensor calibration and placement, which directly impact system performance.

68

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 2.4.1 Supplementary Design Considerations

The sensors in SmartGarden work right out of the box, but if you want your plants to benefit from

that data overall, a little calibration goes a long way. Viewing raw sensor values is insufficient without

proper calibration to ensure their interpretability and practical relevance.

Calibration begins with the soil moisture sensor, which outputs raw analog values ranging from 0 to

1023. These values represent voltage levels and do not inherently convey meaningful soil hydration

levels unless the system is calibrated against known dry and saturated conditions. A simple calibration

procedure involves inserting the sensor into completely dry soil and then again into fully soaked soil

and taking note of those two values. From there, the system can map that range onto something much

more intuitive—like 0% to 100% moisture. Following calibration, a displayed value such as 33%

corresponds to a quantifiable level of soil dryness, offering users a more interpretable and actionable

measurement rather than an arbitrary number.

The air sensor (SHT21, via the GY-21 module) is already solid. It gives temperature and humidity

readings that are generally accurate enough for plant care, with typical variances of about ±0.3°C and

±2% RH. But if you really want to dial it in, especially if you are setting up multiple modules, you can

compare it to a reliable thermometer or hygrometer. If the values are a bit off, it is easy to apply a

correction in the software so everything stays consistent.

Ultimately, calibration ensures reliability and consistency in system responses, which is essential for

automated decision-making. If the system says your soil is dry, it should be dry. If you are automating

watering, you want it to kick in at the right time—not too early, not too late. Taking a few minutes to

calibrate your sensors makes the entire system smarter, more dependable, and better equipped to help

your plants thrive, especially if you are working with distinct species, soil types, or changing conditions

throughout the year.

2.4.2 Justification for Component Selection

The components selected for the SmartGarden system were determined by principles of modularity,

energy efficiency, cost-effectiveness, and interoperability. Each module was chosen for its technical

compatibility and its accessibility in educational or maker-oriented contexts, where rapid prototyping

and adaptation are crucial.

The wireless communication module is centered around the ESP-01, which utilizes the ESP8266

chipset. This compact and economical module features integrated Wi-Fi capabilities, facilitating

effortless integration with local networks for real-time data transmission. Although it has a restricted

number of GPIO pins, the ESP-01 is adept at transmitting basic sensor data and receiving control

commands within small-scale IoT environments.

Environmental monitoring is chiefly performed using the SHT21 sensor, integrated through the GY-

21 module. This sensor offers superior accuracy in temperature and humidity measurements compared

to basic alternatives like DHT11 or DHT22. Its I²C interface guarantees dependable data transmission

and facilitates integration in multi-sensor configurations with reduced wiring complexity.

Soil moisture is assessed with an analog resistive sensor, which provides a cost-effective method for

detecting hydration levels. When properly calibrated, the sensor delivers adequate precision to guide

irrigation decisions and alert thresholds. While more sophisticated capacitive or digital options are

available, the selected analog sensor strikes a balance between simplicity, accessibility, and satisfactory

performance for general houseplant maintenance.

The IRF520 MOSFET relay module facilitates actuation, allowing for the secure and efficient

management of high-power components such as the water pump via logic-level signals from the

69

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Arduino. This relay setup ensures electrical isolation between control and power circuits, thereby

minimizing the potential for damage caused by voltage fluctuations.

The power infrastructure is augmented by the MT3608 DC-DC boost converter, which elevates the

input voltage from low-capacity sources, such as USB ports or battery packs, to satisfy the demands of

downstream peripherals, including pumps and relays. Its adjustable output and extensive input range

render it exceptionally versatile for variable power conditions.

The irrigation system utilizes a 5–12V submersible pump, chosen for its compact design, silent

operation, and compatibility with USB and battery systems. The pump's performance characteristics are

well-suited for standard indoor plant arrangements, delivering dependable and adequate flow for

periodic watering tasks.

Collectively, these elements provide a system that is both functionally resilient and easily repeatable

by students, researchers, and enthusiasts, facilitating instructional applications and small-scale

implementations.

2.4.3 Safety and Reliability

In the SmartGarden system, electronic components are close to water sources, so special attention

must be paid to safety and long-term reliability. Moisture and electronics do not go together. Different

risk factors can develop, which can be prevented through certain design strategies.

One of the key principles is to keep components physically isolated. Sensitive electronics (e.g.,

microcontrollers and sensors) should be located above the soil level or contained inside protective

housings, limiting their exposure to splashes, humid air, and potential corrodibility. When they are

properly sealed, these enclosures can enhance the safety and the mechanical integrity and life of the

system.

Another paramount safety element relates to electrical isolation of the actuation circuitry. Because

we are using an IRF520 relay module to control the water pump, we need a flyback diode across the

pump terminals. This part reduces high-voltage surges, which occur from the inductive load of the pump

when switching on and off, protecting the microcontroller and other low-voltage logic devices.

Choosing the right power supply is crucial in ensuring reliability in the system. It is recommended

to use a stable 5 V power supply, with a minimal current of 1 ampere, to ensure that both control and

actuation subsystems are always on. In the case of larger configurations, or for those with certain

pumps/peripherals used in parallel, it could be advisable to implement a dedicated power rail for the

irrigation hardware to prevent voltage dropping or instability that would affect the logic controller.

These design philosophies allow the SmartGarden system to function properly under moist

environments, ensuring reliability while minimizing hardware failures.

2.4.4 Physical Containment

The first version of the SmartGarden system was built on a breadboard—quick to assemble, great

for testing, and perfect for early development. But for long-term use, especially around water, a more

durable and polished enclosure is strongly recommended. Having proper physical housing is not about

making the system look better; it is about protecting the electronics from moisture, dust, and daily wear.

One practical solution is to use a custom 3D-printed enclosure. These can be designed to neatly fit

all the core components, such as the ESP-01 Wi-Fi module, the Arduino Pro Mini, the SHT21 sensor,

and the wiring that connects everything. A compact, well-fitted enclosure does not just save space; it

also makes the entire system easier to manage and more visually integrated into a home or indoor garden

setup.

70

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 To prevent problems caused by moisture, it is important to seal off any openings where water could

sneak. Simple additions like silicone gaskets or rubber grommets around cable entry points can go a

long way in keeping things safe. These kinds of water-resistant features help ensure that the system stays

dependable, even in high-humidity environments or when the irrigation pump is running regularly. With

appropriate enclosures and minor adjustments, SmartGarden transitions from a functional prototype to

a robust, user-ready product.

2.4.5 Prospective Expansion

The SmartGarden system was designed from the beginning as a modular and extensible platform,

capable of evolving with user requirements and technological progress. Future iterations of the system

are anticipated to include several enhancements, focusing on increasing its autonomy and the accuracy

of its environmental diagnostics.

An enhancement entails the incorporation of a water-level sensor in the irrigation reservoir. This

feature would notify users of low water levels, thus averting dry-run incidents that may harm the pump

or jeopardize plant hydration. Additionally, light monitoring could be implemented via a photoresistor

(LDR), enabling the system to evaluate light exposure at the plant's site. Based on these measurements,

the mobile application could provide recommendations for relocating the plant or activating

supplementary lighting, thereby enhancing photosynthetic efficiency.

To enhance sophisticated plant care methodologies, especially in hydroponic systems or for species

with particular nutritional needs, the integration of pH and electrical conductivity (EC) sensors is

recommended. These sensors would allow for real-time monitoring of substrate chemistry, enabling

prompt interventions such as nutrient modifications or water replenishment.

Moreover, a promising avenue for growth resides in the realm of computer vision and artificial

intelligence. The mobile application could integrate a feature encouraging users to periodically capture

images of their plants. These photographs could be assessed using lightweight AI models to identify

visual signs of plant distress or disease, such as chlorosis, wilting, or fungal manifestations. This

functionality would enable the system to provide proactive care recommendations and early alerts prior

to the emergence of critical problems.

These enhancements would substantially improve the diagnostic capabilities and autonomy of the

SmartGarden system, establishing it as a holistic solution for indoor plant management.

4 Software and Communication

The SmartGarden system combines embedded microcontroller logic with a cross-platform mobile

application for real-time plant monitoring and intelligent irrigation management. It utilizes lightweight

protocols for communication over a Wi-Fi network, ensuring efficiency, scalability, and adaptability for

various plant modules.

4.1 Microcontroller Logic

The SmartGarden system's embedded firmware is allocated between two microcontroller platforms:

the Arduino Pro Mini (3.3V) and the ESP-01 Wi-Fi module. These components collaboratively manage

sensor data acquisition, local server interaction, and irrigation regulation. The Arduino Pro Mini

interfaces with environmental sensors, notably the soil moisture probe (through analog input) and the

SHT21 module (utilizing the I²C protocol). Sensor readings are obtained at specified intervals and

processed locally to maintain system responsiveness and energy efficiency.

71

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The Arduino transmits data via UART to the ESP-01 module, serving as a communication conduit

between the sensor subsystem and the mobile application. The ESP-01 operates a lightweight HTTP

server, functioning within a local area network independent of cloud infrastructure. This server responds

to incoming requests by providing real-time environmental data in JSON format and executing irrigation

commands received through the mobile interface.

The ESP-01 firmware incorporates automatic reconnection protocols to identify and rectify Wi-Fi

disconnection incidents, thereby preserving system reliability. Furthermore, timing mechanisms are

employed to stagger sensor readings and network transmissions, effectively reducing electromagnetic

interference and congestion within the local network. Additionally, error-handling protocols are

integrated to manage failed transmissions or incomplete data exchanges, ensuring consistent

functionality during extended deployment periods.

The communication protocol between the Arduino and ESP-01 is succinct and efficient,

emphasizing simplicity and minimal latency. Commands are conveyed as plain text messages, while

sensor data is structured in JSON objects. This design approach preserves compatibility with lightweight

applications and guarantees system functionality in limited networking conditions.

Segment of Arduino Pro Mini code:

#include <Wire.h>

#include <SHT2x.h>

SHT21 sht;

#define SOIL_MOISTURE_PIN A0

#define PUMP_PIN 8

bool pumpState = false; // Controlled by ESP

void setup() {

 Serial.begin(9600); // Communication with ESP-01

 sht.begin(); // Start SHT21

 pinMode(PUMP_PIN, OUTPUT);

 digitalWrite(PUMP_PIN, LOW);

}

void loop() {

 // Read sensors

 int soilValue = analogRead(SOIL_MOISTURE_PIN);

 float temperature = sht.getTemperature();

 float humidity = sht.getHumidity();

 // Send sensor data to ESP-01 in JSON format

 Serial.print("{\"temperature\":");

 Serial.print(temperature);

 Serial.print(",\"humidity\":");

 Serial.print(humidity);

 Serial.print(",\"soil\":");

 Serial.print(soilValue);

 Serial.println("}");

 // Check if ESP-01 sent a command

 if (Serial.available()) {

 String cmd = Serial.readStringUntil('\n');

 cmd.trim();

 if (cmd == "WATER ON") {

 pumpState = true;

 } else if (cmd == "WATER OFF") {

 pumpState = false;

 }

 }

 // Set pump based on received command

72

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 digitalWrite(PUMP_PIN, pumpState ? HIGH : LOW);

 delay(5000); // Delay between readings (adjustable)

}

Segment of ESP-01 code:

#include <ESP8266WiFi.h>

#include <ESP8266WebServer.h>

const char* ssid = "Alexandra";

const char* password = "26012005";

ESP8266WebServer server(80);

String lastSensorData = "{}";

void setup() {

Serial.begin(9600); // Communicate with Arduino

WiFi.begin(ssid, password);

Serial.print("Connecting to WiFi");

while (WiFi.status() != WL_CONNECTED) {

delay(500);

Serial.print(".");

}

Serial.println("\nWiFi connected!");

Serial.print("ESP IP: ");

Serial.println(WiFi.localIP());

// Endpoint: GET /data

server.on("/data", HTTP_GET, []() {

server.send(200, "application/json", lastSensorData);

});

// Endpoint: POST /water

server.on("/water", HTTP_POST, []() {

if (!server.hasArg("plain")) {

server.send(400, "text/plain", "Missing body");

return;

}

String command = server.arg("plain");

command.trim();

if (command == "WATER ON" || command == "WATER OFF") {

Serial.println(command); // Send to Arduino

server.send(200, "text/plain", "Command sent: " + command);

} else {

server.send(400, "text/plain", "Invalid command"); }

});

server.begin();

Serial.println("HTTP server started"); }

void loop() {

server.handleClient();

// Read sensor data from Arduino

if (Serial.available()) {

lastSensorData = Serial.readStringUntil('\n');

lastSensorData.trim();

Serial.println("[ESP] Received from Arduino: " + lastSensorData); } }

4.2 Mobile Application

The SmartGarden mobile application was created utilizing the Flutter framework to guarantee cross-

platform compatibility and deliver an accessible interface for monitoring and managing plant modules.

73

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The application interacts with each hardware node via a local Wi-Fi network and offers intuitive visual

representations of environmental data along with irrigation controls.

Upon initiating the application, users encounter a dashboard that consolidates data from all

operational plant modules. Each module is depicted by a tile exhibiting real-time sensor metrics,

including soil moisture percentage, ambient temperature in degrees Celsius, and relative humidity in

percentage. Color-coded indicators and succinct status labels (e.g., "Needs Watering," "Healthy")

facilitate a quick evaluation of plant conditions.

By selecting a designated plant module, users can obtain a comprehensive view featuring individual

sensor data and control functionalities. The application accommodates both manual and automatic

irrigation modes. In manual mode, users can initiate immediate watering events or regulate the irrigation

duration via on-screen commands. In automatic mode, users establish soil moisture thresholds and

maximum watering durations, allowing the system to function autonomously based on sensor feedback.

Notifications are generated in real time to inform users when soil moisture levels drop below critical

thresholds or when environmental parameters, such as temperature or humidity, deviate from acceptable

ranges. Other notification triggers encompass communication delays or data update failures, aiding in

the identification of malfunctioning modules or network problems.

Each plant module is distinctly recognized within the application, enabling users to manage multiple

plants autonomously and customize configurations according to the requirements of various species.

This modularity guarantees that the application is scalable and adaptable to diverse use cases, ranging

from individual plant monitoring to multi-node indoor gardening systems.

Flutter's cross-platform capabilities make development much more efficient while ensuring users

get the same great experience whether they're on Android or iPhone. This approach also makes it easier

to add exciting features down the road—like using your phone's camera to diagnose plant problems or

syncing your garden data to the cloud, which would really expand what the SmartGarden system can

do.

At the current stage of development, the application’s interface is represented through early-stage

mockups (Figures 4 and 5), which illustrate the intended layout and user interactions of the final

implementation.

Figure 4. Early-stage UI mockup of the

SmartGarden dashboard interface (designed in

Figma).

Figure 5. Early-stage UI mockup of the

individual Plant Details interface(designed in

Figma).

74

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 4.3 Data Communication

The communication architecture of the SmartGarden system consists of a light and decentralized

model, based on a local HTTP server hosted on the ESP-01 module. This approach eliminates the need

to rely on external cloud/hosting infrastructure, message broker, or third-party services, which enhances

data privacy and gives the ability for the user to control the entire functionality of the system

ESP-01 module works on RESTful server, offering a small number of endpoints for data

transmission and commands execution in real-time. The mobile application can retrieve sensor data from

the GET /data endpoint, which returns the latest environmental values in a JSON-encoded format.

Mobile interface constantly polls this endpoint so that it reflects the plant conditions accurately.

In addition to passive monitoring, users can access the POST /water endpoint to trigger control

actions. This interface fetches system commands such as "WATER ON" or "WATER OFF," allowing

the user to turn the water pump on or off from the application interface. We provide a highly efficient

communication protocol, which maximizes raw bandwidth usage while minimizing negative content

latency.

Our SmartGarden system is designed to run over the local Wi-Fi in your house, so you do not need

to connect it to the internet. This provides the ability to reduce operational costs while enhancing the

platform's robustness and safety, making it suitable for environments where cloud accessibility is not

possible or ideal.

5 Experimental Configuration and Outcomes

For the practical assessment of the SmartGarden system, a complete prototype was built, and it was

evaluated for several days with a single indoor plant: a Monstera Deliciosa. The selected species was a

well-known houseplant with a moderate sensitivity to watering conditions to assess overall accuracy

and responsiveness of the system.

The main objective of the assessment was to ensure the operability of the sensor modules, the fault-

free operation of the irrigation control logic, and the functionality of real-time data exchange between

the hardware and the mobile application in a real-life condition inside a room.

5.1 Setup Description

The experimental assessment utilized a solitary indoor plant specimen, Monstera Deliciosa,

contained in a conventional flowerpot. This species was chosen for its prevalence among indoor

horticulturists and its moderate sensitivity to watering frequency, rendering it an appropriate subject for

evaluating the responsiveness and dependability of automated irrigation systems.

The SmartGarden system was comprehensively implemented in this configuration, with all

components interconnected via a solderless breadboard to enable swift prototyping. Power was provided

through a 5V USB adapter, regulated by an MT3608 step-up converter to satisfy the operational voltage

demands of modules. The hardware interfaced with the mobile application through a local Wi-Fi

network, facilitating real-time data collection and remote irrigation management.

Sensor instrumentation comprised a soil moisture sensor positioned adjacent to the plant's root zone

to accurately measure hydration levels with significant spatial relevance. The SHT21 sensor module

(GY-21) was affixed above the pot to continuously monitor ambient temperature and humidity, reflecting

the microclimatic conditions directly influencing the plant. The ESP-01 module served as the wireless

communication interface, establishing and sustaining a local network connection with the application,

thereby ensuring uninterrupted data transmission and command execution.

75

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Irrigation was conducted utilizing a compact submersible water pump, operable either manually

through a mobile interface or automatically via sensor feedback. The pump was regulated through an

IRF520 MOSFET relay module, which facilitated the requisite switching mechanism to connect the

low-voltage control circuit with the pump's power supply. The complete configuration is presented in

Figure 6, highlighting the arrangement of the electronic components and their spatial positioning.

Figure 6. SmartGarden experimental setup with core components assembled on a breadboard for

demonstration purposes.

5.2 Observations

During the experimental testing phase, the SmartGarden system demonstrated consistent and

reliable performance under standard indoor environmental conditions. A significant observation

involved the dynamics of soil moisture. After each irrigation event, moisture levels decreased at a natural

rate, which varied according to plant species and soil composition. When sensor readings dropped below

a user-defined threshold—established at 30% for the test plant—the system either activated automatic

watering or dispatched an alert to the mobile application, contingent upon the chosen operational mode.

The SHT21 module exhibited consistent and precise readings throughout the testing period

regarding environmental sensing. Variations in ambient temperature and relative humidity logically

aligned with diurnal cycles and room ventilation occurrences, confirming the sensor's responsiveness

and stability. These measurements yielded a dependable dataset for monitoring the plant's growing

environment and guided potential future modifications to care routines.

The system's network resilience was equally significant. The ESP-01 module sustained

uninterrupted Wi-Fi connectivity, with no critical failures or communication disruptions noted. The

embedded firmware's automatic reconnection protocols functioned as intended during simulated

disconnection scenarios, guaranteeing data continuity and maintaining user control through the mobile

application.

The SmartGarden prototype demonstrated its effectiveness as a low-maintenance and responsive

instrument for indoor plant care. Its capacity to combine sensor-driven automation with manual override

options facilitated a flexible plant management approach. Users could oversee and irrigate multiple

plants via a centralized, intuitive interface without dependence on external cloud services, validating the

proposed design's feasibility for both hobbyist and research-oriented applications.

76

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 6 Conclusions

We presented SmartGarden, an open-source, modular, and affordable IoT platform designed for the

monitoring and irrigation of indoor plants. By integrating low-cost microcontrollers (Arduino Pro Mini

and ESP-01), high-precision environmental sensors (SHT21), and a cross-platform mobile application

built using Flutter, this system provides a robust and cost-effective alternative to current smart gardening

technologies.

Unlike many commercial systems that rely on proprietary cloud services, SmartGarden operates

entirely offline and is fully decentralized. This promotes data privacy, long-term maintainability, and

complete user control. Compared to similar solutions, such as the IoT-enabled flowerpot proposed by

Wu et al. [1] or the precision irrigation controller evaluated by Zhang et al. [3], SmartGarden prioritizes

simplicity, full user ownership, and hardware flexibility. Its modular architecture allows users to scale

the platform as needed, accommodating a wide variety of plants and enabling deployment in both

personal and educational contexts.

The project was successfully implemented and tested in real-world conditions. The system proved

to be reliable, flexible, and easy to replicate, supporting both manual and automated irrigation for

various plant species. Its offline functionality makes it particularly suitable for environments where

internet connectivity is limited or unavailable, such as rural homes or classrooms.

SmartGarden also serves as an accessible platform for students and enthusiasts to explore embedded

systems, sensor networks, wireless communication, and environmental monitoring. Its open-source

nature encourages experimentation, customization, and further development.

Future enhancements may include the integration of additional sensors (e.g., pH, EC, light intensity

via LDR), computer vision modules for plant health diagnostics, and optional cloud connectivity for

extended functionality. These additions would significantly increase the autonomy, diagnostic precision,

and usability of the system, transforming SmartGarden into a comprehensive smart horticulture

platform.

The novelty of SmartGarden lies not in the individual components used, but in the practical

integration of offline-first functionality, modular hardware design, and open educational accessibility.

While similar projects exist, few combine these attributes into a cohesive platform that can serve as a

low-barrier entry point for IoT experimentation, especially in rural, academic, or budget-constrained

environments. As such, this system contributes to bridging the gap between DIY prototyping and

scalable smart infrastructure in the context of indoor horticulture.

Acknowledgement: This work was supervised by Professor Anca Vasilescu, from Transilvania

University of Brasov.

References

[1] Y. Wu, C. Zhai, Y. Tian, Design of Intelligent Flowerpot Based on Internet of Things, Asian Journal of

Applied Science and Technology, vol. 4, no. 3, pp. 1–6, 2020.

[2] M. Ahmed, A. Hannan, A. Basaruddin, M. F. Zolkipli, Development of Smart Plant Monitoring System using

IoT, Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 3, pp. 1490–1498,

2020.

[3] T. Zhang, W. Zhang, J. Wang, Wireless Sensor Network-Based Intelligent Irrigation Control System for

Precision Agriculture, Agricultural Engineering International: CIGR Journal, vol. 21, no. 1, pp. 97–107,

2019.

[4] R. Piyare, Internet of Things: Ubiquitous Home Control and Monitoring System using Android based Smart

Phone, International Journal of Internet of Things, vol. 2, no. 1, pp. 5–11, 2013.

77

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 [5] G. R. Choudhari, P. A. Dagale, I. S. Dashetwar, R. R. Desai, A. A. Marathe, IoT-based Smart Gardening

System, Journal of Physics: Conference Series, vol. 2601, no. 1, p. 012006, 2023.

[6] Y. Zhang, X. Wang, L. Jin, J. Ni, Y. Zhu, W. Cao, X. Jiang, Research and Development of an IoT Smart

Irrigation System for Farmland Based on LoRa and Edge Computing, Agronomy, vol. 15, no. 2, p. 366, 2025.

[7] K. Agarwal, S. Ananthanarayanan, S. Srinivasan, A. S, Enhancing IoT-based Plant Health Monitoring

through Advanced Human-Plant Interaction using Large Language Models and Mobile Applications, arXiv

preprint, arXiv:2409.15910, 2024.

[8] A. Risheh, A. Jalili, E. Nazerfard, Smart Irrigation IoT Solution using Transfer Learning for Neural

Networks, arXiv preprint, arXiv:2009.12747, 2020.

[9] A. Bahga, V. Madisetti, Internet of Things: A Hands-On Approach, Universities Press, 2014.

[10] M. Margolis, Arduino Cookbook, 2nd ed., O’Reilly Media, 2011.

[11] D. Giusto, A. Iera, G. Morabito, L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on

Digital Communications, Springer, 2010.

[12] L. D. Xu, W. He, S. Li, Internet of Things in Industries: A Survey, IEEE Transactions on Industrial

Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.

[13] R. H. Barnett, L. O. Mazurek, S. C. Cox, Embedded C Programming and the Atmel AVR, Delmar Cengage

Learning, 2008.

[14] A. McEwen, H. Cassimally, Designing the Internet of Things, Wiley, 2013.

Onose Alexandra

Transilvania University of Brasov
Faculty of Mathematics and Informatics
Bd. Iuliu Maniu nr. 50

500091 Brașov Romania

E-mail: alexandra.onose@student.unitbv.ro

78

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

TransitAI: An AI-Powered Conversational Assistant for

Public Transportation Information Access

Eduard-Alexandru Oprea, Elena-Luiza Buzatu, Ioana-Valeria Turcin

Abstract

Public transportation systems generate vast amounts of structured data through GTFS (General Transit

Feed Specification) feeds, yet accessing this information through conventional interfaces often presents

significant usability challenges. This paper introduces TransitAI, an AI-driven conversational assistant

that bridges the gap between complex transit data and intuitive user interaction. By integrating large

language models with domain-specific transit knowledge, the system enables users to query transportation

information using natural language. The architecture combines a Flask-based backend with specialized

services, including a natural language understanding component (Ollama), real-time data processing

(GTFS Realtime), journey planning (OpenTripPlanner), and data retrieval (Elasticsearch). Through a

modular design, the system accommodates various query types, from stop information and route details

to complex journey planning. Technical evaluations demonstrate the system’s ability to handle complex

transit queries with high accuracy while maintaining responsive performance. This research demonstrates

how AI can transform public service information access, providing insights for future smart city

applications.

1 Introduction

Public transportation is a cornerstone of urban mobility, yet accessing accurate and timely

information about transit services remains a persistent challenge for many users. Traditional methods of

obtaining transit information — such as printed schedules, mobile apps with complex interfaces, or

website navigation — often create barriers, particularly for users unfamiliar with the transit system or

those with accessibility needs.

The widespread adoption of General Transit Feed Specification (GTFS) and GTFS Realtime has

standardized how transit data is structured and shared, enabling innovative approaches to information

delivery. Simultaneously, advances in natural language processing and conversational AI have created

new possibilities for human-computer interaction.

In this paper, we present TransitAI, a conversational assistant for public transportation that

combines large language models with transit data processing to provide users with an accessible

interface for transit information. The application allows the following:

• Ask questions about transit services in their natural language;

• Receive personalized journey planning assistance;

• Access real-time information about arrivals and departures;

• Obtain detailed information about specific routes and stops.

79

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 This integration of AI with transit data represents a significant advance in making public

transportation more accessible to a broader audience, potentially increasing ridership and improving the

overall transit experience.

2 Related work

2.1 Transit information systems

Transit information systems have evolved significantly over the past decade. Web-based

journey planners like Google Maps Transit offer structured interfaces for planning trips [1]. Mobile

applications such as Moovit and Citymapper provide real-time tracking and personalized alerts [2].

However, these systems generally require users to adapt to their interface paradigms rather than

allowing natural language interaction.

Research has shown that complex transit apps can present significant usability barriers,

particularly for elderly users and those with cognitive impairments [3]. Conversely, studies have

demonstrated that natural language interfaces can reduce cognitive load and increase success rates

for transit information tasks [4].

2.2 Conversational AI in public services

The application of conversational AI to public services has gained momentum in recent years.

Previous research has examined the use of chatbots for government services in Europe, finding

significant potential for reducing administrative overhead while improving citizen satisfaction [5].

Similarly, design patterns for chatbots in public sector applications emphasize the importance of context

awareness and clear communication of system capabilities [6].

In the transit domain specifically, studies have demonstrated that real-time information delivery

increases ridership and improves user satisfaction with transit services [7], suggesting that more intuitive

interfaces for accessing this information could further enhance these benefits.

2.3 NLP for Transit Applications

Recent work in natural language processing for transit applications has focused on entity

extraction and intent recognition. Techniques for identifying transit-specific entities such as stop

names and route numbers from user queries have been developed [8]. Building on this, domain-

specific intent classification systems for public transport queries have shown improved performance

over general-purpose NLP systems [9].

Our work extends these approaches by implementing a comprehensive architecture that not

only understands transit-specific queries but also integrates with multiple data sources to provide

comprehensive, real-time responses in a conversational manner.

3 System architecture and design

TransitAI employs a modular architecture that integrates several specialized components to

process natural language queries, retrieve relevant transit data, and generate human-like responses.

80

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 1 Diagram showing the high-level system architecture with components and data flow

The system consists of the following main components.

3.1 Core services

3.1.1 Dynamic QR implementation

The ElkService handles data retrieval from Elasticsearch, which indexes the GTFS static data.

This component is responsible for:

• Finding stops by name or proximity;

• Retrieving route information and schedules;

• Obtaining upcoming departures for specific stops;

• Storing conversation history for context-aware responses.

For example, the implementation of the stop search function uses Elasticsearch’s fuzzy

matching capabilities to handle typos and variations in stop names as previously shown.

3.1.2 OllamaService

The OllamaService provides natural language understanding capabilities using a large language

model. It performs several critical functions:

• Intent detection: Determining whether the query relates to stop information, route

information, journey planning, or general transit questions;

81

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 • Entity extraction: Identifying transit-specific entities such as stop names, route numbers,

and locations;

• Natural language generation: Creating human-like responses based on retrieved data.

The service interacts with the Ollama API as follows:

messages = [
 {
 "role": "system",
 "content": "You are a helpful assistant that extracts transit stop information from user messages."
 },
 {
 "role": "user",
 "content": f"""
 Extract the 'from' and 'to' stop names from the following message.
 These are likely bus, tram, or subway stops.
 Message: {message}

 Return ONLY a JSON object in this format:
 {{
 "from": "exact stop name",
 "to": "exact stop name"
 }}

 If you cannot extract both stop names, return an empty JSON object.
 """
 }
]

The service uses specialized prompts engineered to optimize the language model’s performance for

transit-specific queries, enhancing accuracy for domain terminology.

3.1.3 ElkService

The ElkService handles data retrieval from Elasticsearch, which indexes the GTFS static data. This

component is responsible for:

• Finding stops by name or proximity;

• Retrieving route information and schedules;

• Obtaining upcoming departures for specific stops;

• Storing conversation history for context-aware responses.

For example, the implementation of the stop search function uses Elasticsearch’s fuzzy matching

capabilities to handle typos and variations in stop names:

es_query = {
 "query": {
 "multi_match": {
 "query": query_text,
 "fields": ["doc.stop_name^3", "doc.stop_desc"],
 "type": "best_fields",
 "fuzziness": "AUTO"
 }
 },
 "size": limit
}

82

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3.1.4 OTPService

The OTPService interfaces with OpenTripPlanner to handle journey planning requests. When users

request directions between locations, this service.

The service translates natural language journey requests into structured GraphiQL queries and

processes the responses to extract the most relevant journey options for users.

3.2 Support services

3.2.1 GTFSRealtime service

This service processes GTFS Realtime feeds to provide up-to-date information about vehicle

positions, service alerts, and trip updates. The implementation leverages Google’s GTFS Realtime

protobuf specification:

feed = gtfs_realtime_pb2.FeedMessage()
feed.ParseFromString(response.content)
return feed

This service uses a caching mechanism to minimize API calls while ensuring data freshness.

3.2.2 LocationParser

The LocationParser component specializes in extracting and resolving location references from

user queries.

This component enhances the system’s ability to handle ambiguous location references in natural

language by combining multiple extraction strategies.

3.3 Web Application

The system is exposed through a Flask application that provides API endpoints for various transit-

related functionalities. This backend server acts as the central hub that connects all parts of the system

together.

The chat endpoint serves as the primary interface for natural language interaction. When users send

messages, this endpoint processes them by first determining the intent of the query. It analyzes whether

the message is asking about specific stops, routes, or journey planning between locations. Based on this

analysis, it then fetches relevant transit data from the Elasticsearch service and generates appropriate

responses. For general transit questions, it uses the Ollama language model service to create helpful,

natural language responses with context from the transit database. The endpoint maintains conversation

history to provide continuity in interactions.

83

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 2 General architecture of TransitAI

The route planning endpoint handles the complex task of finding optimal journeys between

locations. When receiving a request with starting and ending coordinates, it connects to the

OpenTripPlanner service to calculate multiple possible routes. It returns detailed information about each

route option, including duration, distance, transport modes, and step-by-step instructions. The endpoint

processes these routes into a user-friendly format with summaries and visualization data for the map

interface. It also stores journey planning requests in the conversation history to maintain context for

future interactions.

3.4 Frontend Services

The frontend components facilitate user interaction with the transit data through a web interface.

These are implemented using JavaScript modules that interact with the Flask API.

3.4.1 MapService

Manages all interactions with the interactive map interface. It initializes the map with appropriate

base layers and configures the visual appearance. This service handles the creation and positioning of

various map elements like stop markers, route lines, and location indicators. It provides functions to

create different types of markers based on their purpose, such as standard stop markers, highlighted

stops, starting points, destinations, and transfer points.

The service manages map layers to organize different types of visual elements, separating stops,

routes, and selected locations into different groups that can be toggled independently. It also handles

map events like zooming and panning, refreshing the displayed stops as the user navigates the map view.

84

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Additionally, it provides functions to load and display detailed information about stops, including

upcoming departures and service alerts, when users interact with stop markers on the map.

3.4.2 StopService

Focuses on managing transit stop data and related functionality. It maintains a cache of all transit

stops to reduce server requests and improve performance. The service provides functions to load stop

data from the backend, find stops by ID or name, and filter stops based on various criteria. It handles

the display of stops on the map, showing them only at appropriate zoom levels to prevent visual clutter.

This service also manages the selection of stops for journey planning, with specialized functions

for setting starting points and destinations. It can highlight specific stops on the map when users search

for them or select them from the interface. The service connects to the backend to retrieve detailed

information about stops, including the routes serving them, upcoming departures, and real-time status

updates. It also provides search functionality to help users quickly find specific stops by name or

location.

3.4.3 RouteService

Handles all aspects of transit route planning and visualization. It provides functions to send route

planning requests to the backend with starting and ending locations. The service processes the resulting

route data and displays route options to the user in an understandable format, showing duration, distance,

transport modes used, and other relevant details.

When users select a specific route option, the service displays detailed step-by-step instructions

and visualizes the route on the map with color-coded lines representing different transportation modes.

It handles the display of start points, endpoints, transfer points, and intermediate stops along the route.

The service also provides functions to clear route planning data and reset the interface when needed.

Additionally, this service can highlight specific transit routes on the map when users inquire about

them, showing all stops along the route and providing information about schedules and service

frequency.

4 System Architecture and Design

4.1 Intent Detection Pipeline

A critical aspect of TransitAI is its ability to accurately identify the user’s intent from natural

language queries. The system implements a specialized intent detection pipeline that classifies queries

into four main categories:

1. Stop Information Queries: Questions about specific stops, such as “What buses serve Central

Station?” or “When is the next bus at Market Street?”;

2. Route Information Queries: Questions about specific routes, such as “Tell me about Route 10” or

“Where does the 42 bus go?”;

3. Journey Planning Queries: Requests for directions, such as “How do I get from Downtown to the

Airport?” or “What’s the fastest way to reach the University?”;

4. General Transit Queries: Other transit-related questions that don’t fit the above categories, such as

“How much is a bus ticket?” or “Are there any service disruptions today?”.

85

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 3 Query Processing Workflow

The intent detection process uses a two-stage approach:

1. The OllamaService performs initial intent classification by analyzing linguistic patterns, keywords,

and semantic context.

2. The ChatManager applies domain-specific rules to refine the classification, considering entities

extracted from the query.

4.2 Entity Extraction

Entity extraction is performed on all queries to identify key information elements:

• Stop names: Identified through a combination of pattern matching and fuzzy search against the

transit database;

• Route identifiers: Extracted using regular expressions and validated against available routes;

• Locations: Processed by the LocationParser to resolve to geographic coordinates;

• Temporal references: Identified to determine whether the query relates to current, future, or

specific time information.

The entity extraction process is customized for transit terminology, improving accuracy for

domain-specific terms that might be misinterpreted by general-purpose NLP systems.

4.3 Query Handling Workflows

Based on the identified intent and extracted entities, the system selects the appropriate processing

workflow:

86

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 4 Transit Query Handling Workflows

1. Route Information: Extracts the route identifier, retrieves route details (including stops and

schedules) from Elasticsearch, obtains real-time vehicle status, generates a response with route

description and status, and includes interactive visualization elements.

2. Journey Planning: Extracts origin and destination, resolves locations to coordinates using a

LocationParser, queries OpenTripPlanner for route options, processes and ranks alternatives,

generates a response with journey details and timing, and includes interactive visualization

elements. Elasticsearch may be used to store location data.

3. General Query: Extracts key topics and entities, searches a transit knowledge base (within

Elasticsearch and the model’s own information base – but we plan on allowing internet access) for

relevant information, generates a contextual response, and provides links to further information.

4. Stop Information: Extracts stop names, searches Elasticsearch for stop details, retrieves departure

times, and generates stop information.

5. All workflows leverage Elasticsearch for data storage and retrieval, ensuring efficient access to

transit information.

5 Data Integration and Processing

5.1 GTFS Static Data Processing

TransitAI relies on GTFS static data as its foundation for transit information. This data is processed

and indexed into Elasticsearch to enable efficient querying. The processing pipeline includes:

1. Data Validation: Checking for consistency and completeness of the GTFS feed

2. Geospatial Indexing: Creating spatial indexes for stops and routes to enable proximity-based

queries;

3. Text Normalization: Standardizing stop names and descriptions for improved search

87

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 4. Relationship Mapping: Establishing connections between routes, stops, and schedules

Fig. 5 GTFS Static Data Processing Pipeline

The indexed data structure optimizes for the types of queries most common in conversational

interactions, prioritizing fast retrieval of stop and route information.

5.2 GTFS Realtime Integration

Real-time transit updates are essential for providing accurate and timely information to users. The

GTFSRealtimeService operates continuously in the background, fetching live transit data from a GTFS

Realtime producer server every 30 seconds. The service processes three key protobuf files:

• Trip Updates (tripUpdates) – Contains real-time modifications to scheduled trips, such as

delays, cancellations, and changes in stop sequences.

• Vehicle Positions (vehiclePositions) – Provides the real-time geographic locations of transit

vehicles, along with attributes like speed and occupancy status.

• Service Alerts (serviceAlerts) – Delivers notifications about unexpected service disruptions,

detours, or major operational changes.

These real-time updates are structured using Protocol Buffers (protobuf), a compact and efficient

data format optimized for transmitting structured data. The GTFSRealtimeService decodes these

protobuf files, integrating the live feed with the static GTFS dataset. Where real-time information is

available, it overwrites the corresponding static GTFS data, ensuring that users always receive the most

up-to-date transit status.

By combining real-time data with static GTFS information, the system ensures accurate, up-to-date

updates that reflect changes in transit networks. With frequent data refreshes, passengers receive precise,

real-time details, reducing confusion and improving their travel planning. Additionally, the GTFS

Realtime Service allows the application to continuously consume the real-time data feed, facilitating

faster responses to disruptions and providing valuable insights into service performance. This dynamic

system enhances the passenger experience and contributes to the overall efficiency and sustainability of

public transportation.

88

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 6 GTFS Realtime Data Integration Pipeline

These real-time data points are integrated with the static schedule information to provide users with

the most current transit status.

5.3 OpenTripPlanner Integration

For journey planning, TransitAI integrates with OpenTripPlanner through its GraphiQL API. This

integration enables:

• Multimodal Routing: Planning journeys that combine various transportation modes;

• Time-Based Planning: Finding optimal routes based on departure or arrival times;

• Preference Handling: Incorporating user preferences for shorter walking distances.

Fig. 7 OpenTripPlanner Integration Architecture

89

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The OTPService translates natural language journey requests into structured API calls and

processes the responses to extract the most relevant information for users.

6 Response Generation and Presentation

6.1 Natural Language Response Generation

TransitAI generates natural language responses that combine retrieved transit data with

conversational elements. The response generation process:

1. Structures the retrieved data based on query intent.

2. Selects the most relevant information to address the user’s query.

3. Applies natural language templates with dynamic content insertion.

4. Adds contextual elements such as time references and location descriptions.

5. Incorporates conversational markers for a more human-like interaction.

This approach ensures that responses are informative yet conversational, avoiding the robotic

quality of many transportation information systems.

6.2 Map Visualization

For spatial information such as stops, routes, and journeys, TransitAI provides interactive map

visualizations. The MapService component creates:

• Stop Markers: Visual indicators of stop locations with popup information;

• Route Lines: Color-coded route visualizations with direction indicators;

• Journey Paths: Step-by-step visual representation of planned journeys;

• Vehicle Positions: Real-time locations of transit vehicles when available.

Fig. 8 Chatbot and Map Interface

These visual elements complement the text-based responses, providing users with spatial context

that is difficult to convey in words alone.

90

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 6.3 Multi-Turn Conversations

TransitAI supports multi-turn conversations, maintaining context across interactions. This enables:

• Follow-up Questions: Users can ask for additional details without repeating context;

• Refinement Requests: Journey preferences can be adjusted based on initial results;

• Comparative Queries: Users can compare multiple routes or times;

• Clarification Dialogues: The system can request additional information when queries are

ambiguous.

This conversational capability creates a more natural and efficient interaction model compared to

traditional form-based transit information systems.

7 Conclusions and Future Work

7.1 Implications for Transit Information Access

TransitAI demonstrates that conversational interfaces can significantly improve access to transit

information. The natural language approach removes barriers associated with complex transit

terminology and interface navigation, potentially making public transportation more accessible to a

broader audience.

The system’s ability to integrate real-time data with contextual understanding creates a more

valuable user experience than static information delivery. By providing personalized, timely

information, conversational assistants may help increase transit ridership by reducing uncertainty and

improving the passenger experience.

7.2 Challenges and Limitations

Several challenges emerged during the development and testing of TransitAI:

• Location Ambiguity: Common place names and informal location references remain

challenging to resolve;

• Complex Journey Preferences: Some nuanced preferences are difficult to express and fulfil in

natural language;

• Data Quality Dependencies: The system’s accuracy is limited by the quality and timeliness of

underlying GTFS data;

• Dialect and Language Variations: Regional terminology and non-native speakers present

recognition challenges.

These limitations highlight areas for future improvement and research.

7.3 Future Directions

Several promising directions for future work include:

• Multilingual Support: Extending the system to handle multiple languages, particularly important

in diverse urban areas;

• Multimodal Input/Output: Incorporating voice interaction and accessibility features;

• Personalization: Learning from user history to provide more tailored suggestions;

• Cross-Agency Integration:Expanding to support seamless planning across multiple transit

agencies;

• Fare Information: Adding detailed fare calculation and payment integration;

Additionally, exploring the application of this architecture to other public service domains could

yield valuable insights for smart city development.

91

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 7.4 Conclusion

TransitAI represents a significant step forward in making public transportation information more

accessible by leveraging natural language interfaces. By combining large language models with

specialized transit data processing, it effectively addresses the limitations of traditional transit

information systems. The system's modular design also provides a flexible framework that could be

applied to other domains where complex data needs to be made accessible to the general public.
As cities increasingly prioritize public transportation and sustainability, TransitAI has the potential

to enhance the passenger experience, encourage greater use of transit systems, and contribute to smarter,

more efficient urban environments. The fusion of artificial intelligence and public service information

marks an exciting frontier for the future of smart cities.

References

[1] Hansen M., Glover, J., Human-Computer Interaction: Designing for Diverse Users and Domains , CRC

Press, 2011

[2] Moovit and Citymapper URL: https://www.pcmag.com/news/transit-app-face-off-citymapper-vs-

transit-vs-moovit

[3] Kramer A., Hoon, D., Challenges in Public Transport Systems for Elderly and Disabled Users, Springer,

2015.

[4] Helen Sharp, Jennifer Preece, Yvonne Rogers, Interaction Design: Beyond Human-Computer

Interaction (5th Edition), Wiley, 2019.

[5] Alonso J., Castillo E., The Impact of Chatbots in Public Administration: Case Studies from European

Governments, International Journal of Public Administration, vol. 41 (7) , pp. 576-586, 2018.

[6] Zhao Y., Liu X., Chatbot Design for Public Services: Enhancing Contextual Awareness and User

Experience in Government Applications, Journal of Public Administration Research and Theory, vol.

31 (2), pp. 314-327, 2021.

[7] Nitsche A., Sieber A., Real-Time Information and its Impact on Ridership and User Satisfaction in

Public Transport Systems, Transportation Research Part A: Policy and Practice , pp. 107-120, 2015.

[8] Zhang Y., Yang Q., Named Entity Recognition for Public Transport Queries Using Natural Language

Processing Techniques, International Journal of Transportation Science and Technology, 8(2) , pp. 90-

102, 2019.

[9] Tur G., De Mori R., Spoken Language Understanding: From Theory to Practice , Springer, 2011.

Eduard-Alexandru OPREA

National University of Science and

Technology

Politehnica Bucharest, Pitești

University Center

Faculty of Sciences, Physical Education

and Informatics

Department of Mathematics and

Informatics

Str. Targul din Vale, nr. 1, Pitești

ROMANIA

E-mail: edyoprea69@gmail.com

Elena-Luiza BUZATU

National University of Science and

Technology

Politehnica Bucharest, Pitești

University Center

Faculty of Sciences, Physical Education

and Informatics

Department of Mathematics and

Informatics

Str. Targul din Vale, nr. 1, Pitești

ROMANIA

E-mail: elenaluiza10@gmail.com

Ioana-Valeria TURCIN

National University of Science and

Technology

Politehnica Bucharest, Pitești

University Center

Faculty of Sciences, Physical Education

and Informatics

Department of Mathematics and

Informatics

Str. Targul din Vale, nr. 1, Pitești

ROMANIA

E-mail: turcin.ioana@yahoo.com

92

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

AI Platform for Real-Time Cyber Threat Detection

Vlad-Matei Poienariu, Rares Muntean, Vlad-Stefan Alexandrescu

Abstract

This paper introduces an AI-powered application platform model for cyber threat detection in real-

time. The System uses machine learning that is constantly adapting to new threat patterns. By efficiently

monitoring the network traffic, the application's security is enhanced. The purpose of the application is

to be able to handle many types of threats and attacks by adapting to malicious threats in various shapes

and forms. After each interaction with malware, the AI is capable of learning new tactics, ensuring the

application is constantly up to date with the new threats available. Implementing the AI in the program

results in regularly fortifying the network's safety, reliability, and the User's experience. These

advantages are provided by a properly trained machine learning model capable of smoothly receiving

data from the System. The User is able to view everything and is notified when a new thread is being

discovered by using a modern User-Interface dashboard. Automating security duties for the System, such

as keeping track of the logs, alerts, or common incidents, helps minimize human errors and concentrates

the team on more complex security threats, making it more efficient when it comes to traditional

cybersecurity. Additionally, AI can predict future attacks, allowing organizations to prepare for them.

1 Introduction

The broadening attack surface and the development of advanced adaptive threats have created

a landscape in cybersecurity that made old-guard defenses less effective than in the past. The rise

of advanced persistent threats (APTs), polymorphic malware, and zero-day exploits has highlighted

the need for dynamic, real-time protection systems. Tools like AI (artificial intelligence) and ML

(machine learning) are no longer tools in the laboratory but an essential part of the infrastructure of

modern cybersecurity [1-3].

The top AI cybersecurity platforms are able to utilize real-time data analytical processing,

behavioral modeling, and abnormality recognition in order to analyze potential threats before they

become breaches. Platforms like IBM's QRadar, Palo Alto's Cortex XDR, and Microsoft Defender

for Endpoint utilize machine learning algorithms to sift through immense amounts of network traffic

and identify bad activity with minimal human oversight. These platforms are focused on

automation and predictive capabilities to reduce the mean time to detect (MTTD) and respond

(MTTR) to threats. Collecting threat intelligence through unstructured data parsing of open-source

intelligence (OSINT) has become more efficient, facilitated by developments in natural language

processing (NLP) and deep learning that have made it possible for systems to analyze and recognize

phishing campaigns, suspicious domains, or vulnerable assets. Reinforcement learning is also being

investigated to enable AI agents to learn defense strategies autonomously in simulated

environments of potential attacks as well [4-9]. However, there are still hurdles to overcome. Many

93

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

current solutions depend on static models that need frequent retraining and have difficulty

generalizing to various threat landscapes [10]. Moreover, because of their black-box nature, some

AI models are perceived as not exposing model-decision-oriented accountability, resulting in

concerns about transparency in some decision-making processes.

The main objective of this paper is to present a holistic software architecture for an AI-based

platform for real-time cyber threat detection, laying out the advanced data ingestion pipelines,

machine learning engines, and methods of alerting that can ultimately be used to help support SOC

teams and cybersecurity analysts in being able to defend against threats proactively.

This goal requires the following specific objectives to be established in this paper:

• The research aims to synergize various data streams in a modular and scalable architecture,

enabling real-time integration of diverse input sources, including logs, network traffic, and

endpoint telemetry.

• To integrate AI/ML-based detection mechanisms, such as supervised and unsupervised

learning models for anomaly detection, pattern recognition, and threat scoring.

• Create an automated detection and correlation engine that can aggregate indicators and

correlate events through both AI output and rule-based logic.

• To formalize alerting and reporting mechanisms for timely notification and visualization,

including integrations with SIEM, dashboards, and external intelligence feeds.

This will help with secure access control and robust data storage in line with cybersecurity best

practices and compliance requirements. To this end, we present a new AI platform capable of

building on preceding limitations by utilizing machine learning mechanisms such as learning from

everyday malware interaction. We do this through improved detection, automated incident

response, and feedback in a new UI. We endeavor to close this loop through our platform by

invoking a combination of self-healing, continuous learning, and human-in-the-loop capabilities to

provide expert foot-tracking without missing a beat.

1.1 The proposed AI Platform

In the following, we will introduce our proposed AI Platform. On each attack, the logs are

saved while AI receives a set of data to prevent further attacks from happening. This way, the app's

ability to detect and remove malware becomes more performant. The User can manually train the

model with different data sets to efficiently reduce learning time. Each security log that emerges

from different attacks has various parameters, like a solution and main cause. AI can shorten the

time it takes to solve problems by connecting future problems with the ones that are curren tly

known. Each malware attack differs in parameters; that is why the AI is recognizing problems with

ease. To be able to observe the efficiency and security boost, we need a large data set to start with.

In this line, it's important to create data samples that include common problems and solutions in

order to detect attacks, resulting a more reliable security.

When a new technology emerges, and the program is not up to date with it, we can already tell

that it is left behind, and the chances of risk grow exponentially. That is why AI, which is becoming

more intelligent day by day, and many more abilities are becoming public with unlimited access for

everyone, such as image generators and voice generators, has more chances of going undetected. In

order to resolve this issue, the app must be updated with the latest data samples and issues on the

User's device.

The application is able to offer tips regarding the User's privacy protection, like choosing a

proper password and warning him about potentially dangerous websites. The user interface is

modern and simple, making it straightforward for the User to access these features. The AI can

recognize the programs that the User is normally using in a span of a few days. The User will be

notified if a program has suddenly appeared and is being used at an inordinate rate in comparison

94

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

to other standard programs, allowing him to take immediate action. Furthermore, the application

can confirm the device's resource usage, and if it exceeds a specific threshold, it automatically

isolates or deletes it. Because of the interface and the modern app, the User is up to date with

everything that is going on, having access at any moment to eliminate or ignore the malicious files

detected by the app.

The subsequent step will involve an examination of the most prevalent cyber-attacks that have

a high success rate. We will observe their functionality and the extent to which an AI can avert

these issues prior to their inflicting any harm.

2 Types of cyber attacks

A cyber attack is a type of malicious attack that an individual or an organization typically

initiates to get sensitive data from another individual or organization, usually for their benefit.

Moreover, 53% of the attacks typically caused $500,000 in damages or more; that is why it 's critical

to keep up with the new malware types and put a stop to them. The more hidden a virus is, the

higher the There are chance it has to affect the device over a longer period. That is why the

identification of the viruses is an essential procedure.

DDoS Attack—Once a site becomes popular, the chances of being a target of a cyber-attack are

growing exponentially. Unfortunately, this popularity can make the website known to bad-

intentioned people. DDoS, or Distributed Denial of Service, is a cyber-attack where computers

infected with a common virus can be simultaneously controlled to make the number of accesses

impossible to recreate by a human. An infected device can also be called a bot. A group of connected

devices is called a botnet, and it can be used for various purposes, including launching DDoS

attacks. Excessive calls to an IP, which can be a website or a device, overwhelm the network and

make normal use impossible.

The detection of DDoS attacks is relatively simple because suddenly, the app or website is

running very slowly. The logs and the exponential growth of calls to the server can also reveal

DDoS attacks. By constantly analyzing the traffic, an AI security app can easily realize that a DDoS

attack is happening. These calls can come from a single device (single IP) or multiple devices

(multiple IPs). The OSI protocol stack is distributed in 7 layers. The number 7 layer is

"Application", the layer that the DDoS attack acts on. Unfortunately, distinguishing between a

normal User and a bot makes identifying attacks on this layer quite difficult.

Phishing Attack - Phishing is another type of cyber attack that first occurred in 1995. The word

'phishing' is a variation of 'fishing', which refers to attracting sensitive information. It is a type of

social engineering and a scam where people are lured into revealing their personal information, like

credit cards or login credentials, making it the most used cyber-attack method since 2020. Usually,

these are present in email spam, SMS phishing, phone calls, social media, hyperlinks, and even

webpages that claim to be another by replicating the interface 1:1. To be able to prevent these kinds

of attacks, we should integrate into our AI models the most used social engineering tactics, the latest

phishing campaign indicators, and also the known dangerous IPs or domains. We can also train the

AI to look out for very similar domains (g00gle.com instead of google.com). Simulating phishing

attacks is recommended because this type of malware, which usually interacts directly with humans,

is difficult to train models with, allowing people to learn and adapt to these kinds of problems.

Malware Attack - Very popular and common, a malware attack is the usual dangerous cyber

assault that leads to malicious software infiltrating a user's or company's System to cause harm. The

usual and common types are viruses, trojans, spyware, and so on. Malware infections can occur in

various ways, such as downloading a file that contains a virus or using an infected USB stick.

Usually, if there are suspicious processes and memory usage, it means some malware is inside the

System. By analyzing incoming and outgoing network traffic and file system activity, including

concealed files, we could train the AI to detect these and warn of or prevent future problems.

95

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

3 The process of creating the Machine Learning model

In order to develop the machine learning model, we start by defining a variable called "data", where

we will stock pd.read_csv('UNSW_NB15_training-set.csv', index_col=0) [11]. The read_csv() function

reads the data set that is extracted from a library which allows the download of more data from different

Kagglehub domains. Furthermore, data.shape is a tuple that contains a number of rows and columns

from the *.csv type data set. This thing will help us make an idea about the file dimensions that we are

working on.

data = pd.read_csv('UNSW_NB15_training-set.csv', index_col=0)

data.shape

data.info()

Herein, data.info() returns information about rows and columns present in the file, including the

data type for each line from *.csv, as well as the total number of columns displayed in the header.

data.duplicated().values.any()

data.count()

The next function duplicated().values.any() analyses the given data frame and returns true if there

are duplicate rows inside. Additionally to the previously presented function, the data.count() function

will return the total number of lines. This thing is being used because, through a small difference, we

can find the total number of duplicated lines very easily.

data = data.drop_duplicates()

After calling these functions, it is necessary to call one more with the goal of eliminating the

duplicates, the function being data.drop_duplicates(). To be able to see exactly the number of deleted

duplicates, we will display again the previous function data.count(). The quantity of duplicated lines

can be determined from this point. One other way to check if the duplicated lines have been eliminated

is to call again, the data.duplicates().values.any(). The result should now be 0. In case the result is not

0, we can certainly state that an error has been encountered. Some of the present values in the *.csv file

are not the correct type for the machine learning algorithm. That is why they must be converted to the

real numeric data type (float) using the LabelEncoder() function. We will select every column from the

file using data["columnName"], and we will assign to it the returned value from the

label_encoder.fit_transform(data[“columnName”]).

label_encoder = LabelEncoder()

data["columnName"] = label_encoder.fit_transform(data["columnName"])

The train_test_split function separates 30% of the features and target_attack_category variables.

This option is set by the test_size=0.3 parameter, value 0.3 representing 30% of a maximum of 1. Next,

these 30% will be kept separate so that at the end we can compare the predicted results to what we aim

to generate an accuracy percentage for the trained model. The remaining 70% of the data will be used

for the actual training of the model. X represents the data provided by us through training and future

results are illustrated by Y.

target_attack_cat = data["attack_cat"]

features = data.drop("label", axis=1).drop("attack_cat", axis=1)

96

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

X_train_attack_cat, X_test_attack_cat, y_train_attack_cat, y_test_attack_cat = train_test_split(features,

target_attack_cat, test_size=0.3)

The RandomForestClassifier() function creates an instance through which, after using the fit()

function, we define which datasets the model should use to train. The data used are the previously

specified X and Y.

model_label = RandomForestClassifier()

model_label.fit(X_train, y_train)

Next, we will save the model using the joblib library, from which we will call the .dump() function.

We will use the data model to predict the attack categories from the data frame that we kept for testing

(30%). We compare the predicted results with the actual ones to demonstrate the model's results.

joblib.dump(model_label, 'model_label.pkl')

predict_label = model_label.predict(X_test)

score = accuracy_score(y_test, predict_label)

print(f"{score * 100}%")

Having trained a Random Forest for a complex dataset of near real traffic and maliciousness, we

had obtained pretty good performance as seen by the confusion matrix (see Fig. 1). This visual tool

effectively illustrated the extent to which the algorithm was able to differentiate legitimate connections

from cyberattacks.

It eventually learnt to classify most of the data packets accurately, classifying both normal and

malicious traffic correctly. The main diagonal of the matrix displays instances where the model’s

predicted labels perfectly matched the actual labels — a desired outcome. The tall values along this axis

suggests that the system does not only learn the traffic patterns, but can also detect them reliably on

new data.

There were also far fewer in the off-diagonal regions — where the model gets it wrong. This is

very important for a threat detection system in order to:

• False negatives (missed attacks) can result in serious security issues.

• Whereas false positives lead to unnecessary alerts and alert fatigue in SOC teams.

Using Random Forest this way validated the strength of Random Forest as an algorithm, as well as

being a solid candidate for an AI-based threat detection system. The ability to incorporate a variety of

features — including ports and protocols, response patterns and latency — enables complex and accurate

learning.

These results confirm the vision outlined in the project's architecture, where a high performance

machine learning engine is incorporated into a modular pipeline for automated real-time detection, event

correlation and relevant alerts for cybersecurity teams.

97

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 1: The confusion Matrix – Random Forest

Now that we've built the Random Forest model (training during the previous Instantiated Random

Forest), in this section, we'll be examining the model deeper and seeing how each of the individual

features contributed towards the classification. This analysis showed what features were most important

to the decision-making in the model.

The resulting diagram orders the top 15 features according to their corresponding importance in

the prediction of a network connection being benign or malicious. Where some of the most important

features were: sbytes (source bytes), dbytes (destination bytes), and rate. These metrics represent the

volume and velocity of data transfer — often a strong indicator of abnormal or aggressive behavior

typical of attacks.

Also of significance were the Time-to-Live (TTL) attributes for both the source sttl and destination

dttl packets. A difference in these values can indicate packet manipulation or evasion techniques used

in cyberattacks. Similarly, connection-level statistics like ct_state_ttl (state and TTL-based flows) and

dmean (mean destination packet size) also emerged as important indicators of suspicious traffic patterns.

What this says to us is something significant: the model isn’t just looking for easy flags (such as

protocols used, service ports, etc.) — it’s learning to identify traffic nuances, differences in behavior.

This highlights the power of the synergy between rich telemetry and ensemble machine learning, which

enables the system to go beyond rule-based designed logic to pattern recognition at scale.

The feature importance profile builds trust in the model’s predictions and can help cybersecurity

analysts with their work. Prefixing the attention towards the relevant attributes leads to focused

monitoring, smarter rules, and real-time anomaly detectors — and stimulate all these in evidence-based

and data-driven reason.

98

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 2: Feature importances – Random Forest

4 The proposed AI Platform

Fig. 3 shows the component diagram of the proposed AI Platform. In the following, we will present

a short description of our components within the AI Platform for Real-Time Cyber Threat Detection.

Data Ingestion Layer. Collects system logs, network traffic, endpoint activity, and external threat

intelligence (e.g., OSINT) on an ongoing basis. It serves as the raw intake funnel for the System.

Preprocessing & Feature Engineering. Goes through raw input data, cleans it, and converts it

to machine-readable formats. Things like normalization, feature extraction, and encoding to make

the data ready for ML processing.

Machine Learning Core. The core of the platform applies supervised (i.e., RandomForest) and

unsupervised models to identify anomalies and score threats. Compatible with future reinforcement

learning integration and supports continuous learning.

Detection & Correlation Engine. Integrates AI outcomes with rule-based logic to correlate

events, identify threats, and assign priority based on risk. It gives more context to improve the

accuracy of threat detection.

99

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 3: Component Diagram of the proposed AI Platform

Alerting & Visualization Layer. Creates alerts and visual insights through a live dashboard.

SIEM Tool Integrator and Automated Reports Generate for Situational Awareness

User Interaction Layer. It displays alerts, makes recommendations for privacy maneuvers, and

keeps an eye out for strange behavior in apps. Keeps the users in the loop and aware.

Incident Response Module. Quarantines or removes detected threats and logs any actions

taken. Allows for fast response while preserving forensic evidence.

Model Management Layer. Development of ML lifecycle using training pipelines tracking and

monitoring of accuracy Keeps the model current and reliable.

In Fig. 4, we have inserted the Use Case Diagram of our proposed AI Platform. The Use Case

Diagram describes the interactions of the main actors in the core AI Platform for Real-Time Cyber

Threat Detection. This includes technical actors (e.g., AI Engine, Data Sources) as well as human

actors (e.g., User, Security Analyst), describing what each one does within the System. Herein, the

100

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

User acknowledges alerts, provides feedback, and tracks system progress. Also, the System

automates ingestion, ML inference, and threat correlation. Further on, the Security analysts deal

with advanced monitoring and model updates. Moreover, external threat feeds ensure model

relevancy by providing real-time threat indicators.

Fig. 4: Use Case Diagram of the proposed AI Platform

In Fig.5 it can be observed the State Diagram of the proposed AI Platform. The state diagram

modeling the cyber threat lifecycle in the AI Platform. It shows how an event detected traverses

through the System from detection to containment, followed by a user review and learning feedback.

The lifecycle phases are the following: detection (the System receives the data stream in real-time),

analysis (AI/ML tells), target (the machine and/or human), and log (feedback informs continuous

improvement). This shows the development, analysis, and stakeholders to understand how the

System performs in real-time response to different conditions of threats.

101

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 5: The State Diagram of the proposed AI Platform.

Fig. 6 highlights the Threat Flow Sequence diagram of our proposed AI Platform. This is a

sequence diagram where we are modeling how your AI platform processes and responds to a cyber

threat in real-time. It assumes that the threat is being detected either through endpoint telemetry or

network traffic, such as:

• Malware Execution

• Suspicious login (Phishing)

• Traffic spike (DdoS)

Fig. 7 shows the Deployment Diagram for AI Platform for Real-Time Cyber Threat Detection.

This shows how the ML engine can be cloud-based and process local data, or a cloud-based UI can

respond to local incidents, etc, and the Agent + UI is running on user endpoints (laptops, servers,

and so on). The ML workloads are executed in the cloud for scaling, model version control, and

external feeds.

102

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 6: The Threat Flow Sequence Diagram (Detection to Response)

103

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig. 7: Deployment Diagram – Hybrid AI Threat Detection Platform

104

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

The UI of the AI Platform for Real Time Cyber Threat Detection, which is presented in Fig.8,

is designed to be modern, intuitive, and responsive, providing clear, actionable insights for common

users as well as security analysts. This layout strikes a balance between functional clarity and

streamlined aesthetics, enabling effortless navigation without losing the depth of control required

for critical threat response operations. It facilitates real-time responsiveness and easy integration

with back-end components, including the ML engine, alert manager, and incident response module.

Fig. 8: Interface (UI) of the proposed AI Platform

5 Conclusions

Building a next-gen real-time cyber threat detection platform powered by the latest AI models.

Unlike traditional approaches, the proposed-based platform detects and responds to known cyber threats

while continuing to train and learn new attacks leveraging machine learning techniques. With

automated incident recording, anomaly-based detection, and a user-friendly interface, the application

improves cybersecurity reliability and responsiveness.

Based on the UNSW-NB15 dataset experimental outcomes, the accuracy in the number of attack

categories has also been achieved at a high level, which confirms the reliability of the model training

and feature engineering process. Moreover, the modularity of the platform allows for constant updates

and scalability, making it a practical answer to the ever-evolving threat landscape.

Future work will focus on:

• Improve the explainability of information and AI decisions using model interpretability tools.

• Data set increases for zero-day threats and simulations of real-world attacks.

• SAP-enabling capabilities for broader use with SIEM, cloud-native platforms.

This work helps bridge the gap between automated threat detection and actionable cybersecurity

intelligence, providing resiliency and real-time protection in modern IT environments.

105

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Acknowledgement: This work was supervised by Lecturer Dr. Valentina Marascu, from National

Institute for Laser, Plasma & Radiation Physics (INFLPR) and Faculty of Engineering and

Computer Science, SPIRU HARET University; Associate Professor Dr. Marius Iulian Mihailescu

from the Faculty of Engineering and Computer Science, SPIRU HARET University; and Lecturer

Dr. Stefania Loredana NITA from Institute for Computers & Faculty of Information Systems and

Cybernetic Security", Military Technical Academy "Ferdinand I."

References

[1] Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship , Publisher : Pearson; 1st

edition (August 1, 2008), ISBN-10: 9780132350884.

[2] Jon Erickson, Hacking: The Art of Exploitation, Publisher: No Starch Press; 2nd edition (February 4,

2008), ISBN-10 : 1593271441.

[3] Andreas C. Müller, Sarah Guido, Introduction to Machine Learning with Python: A Guide for Data

Scientists, Publisher: O'Reilly Media; 1st edition (November 15, 2016), ISBN-10 : 1449369413.

[4] S. P. Satpathy, S. Raj, A. K. Dash, S. K. Gouda and S. Jha, Enhancing Cybersecurity with Machine

Learning: Anomaly Detection and Threat Prediction, 2024 International Conference on Artificial

Intelligence and Emerging Technology (Global AI Summit), Greater Noida, India, 2024, pp. 1259 -1264,

doi: 10.1109/GlobalAISummit62156.2024.10947851.

[5] James Kurose, Keith Ross, Computer Networking: A Top-Down Approach, Publisher: Pearson; 7th

edition (April 26, 2016), ISBN-10 : 9780133594140.

[6] V. S. S. R. Nallapareddy and S. K. R. Katta, AI-Enhanced Cyber Security Proactive Threat Detection

and Response Systems, 2025 4th International Conference on Sentiment Analysis and Deep Learning

(ICSADL), Bhimdatta, Nepal, 2025, pp. 1510-1514, doi: 10.1109/ICSADL65848.2025.10933436.

[7] N. K. Alapati and S. Dhanasekaran, The Performance Analysis of Cyber Threat Detection Model Using

AI based Classifiers, 2024 Global Conference on Communications and Information Technologies

(GCCIT), BANGALORE, India, 2024, pp. 1-5, doi: 10.1109/GCCIT63234.2024.10862442.

[8] V. R. Saddi, S. K. Gopal, A. S. Mohammed, S. Dhanasekaran and M. S. Naruka, Examine the Role of

Generative AI in Enhancing Threat Intelligence and Cyber Security Measures , 2024 2nd International

Conference on Disruptive Technologies (ICDT), Greater Noida, India, 2024, pp. 537-542, doi:

10.1109/ICDT61202.2024.10489766.

[9] R. Vadisetty and A. Polamarasetti, Generative AI for Cyber Threat Simulation and Defense , 2024 12th

International Conference on Control, Mechatronics and Automation (ICCMA), London, United

Kingdom, 2024, pp. 272-279, doi: 10.1109/ICCMA63715.2024.10843938.

[10] D. Chaudhary, S. K. Verma, V. Mohan Shrimal, R. Madala, R. Baliyan and S. M, AI-Based Methods to

Detect and Counter Cyber Threats in Cloud Environments to Strengthen Cloud Security , 2024

International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater

Noida, India, 2024, pp. 1-6, doi: 10.1109/ICEECT61758.2024.10739173.

[11] Muntean Rares, Basic Model Training Cyberthreats, https://github.com/MunteanRares/basic-model-

training-cyberthreats (last accessed on April 11, 2025).

Vlad-Matei Poienariu

SPIRU HARET University

Faculty of Eng. and Computer Science

46G Fabricii Street, District 6,

Bucharest

ROMANIA

Email: g.vlad.poienariu@spiruharet.ro

Rares Muntean

SPIRU HARET University

Faculty of Eng. and Computer Science

46G Fabricii Street, District 6, Bucharest

ROMANIA

Email: g.rares.muntean@spiruharet.ro

Vlad-Stefan Alexandrescu

SPIRU HARET University

Faculty of Eng. and Computer Science

46G Fabricii Street, District 6, Bucharest

ROMANIA

Email:

g.vlad.alexandrescu@spiruharet.ro

106

https://github.com/MunteanRares/basic-model-training-cyberthreats
https://github.com/MunteanRares/basic-model-training-cyberthreats

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Multi-Task Learning vs. Individual Models in Scarce Data
Scenarios - Stock Price Prediction

Andrei Priboi

Abstract

This paper analyzes the application of a Multi-task learning methodology for financial time series
forecasting, particularly stock price prediction. We will compare and analyze two prediction mod-
els, one trained on individual company data, and one trained on data ranging from different stocks
and domains, which leverages cross-stock knowledge transfer. The empirical foundation is historical
closing price data for 50 major stocks, from 2020 to 2023, and the model architecture was optimized
via a random search for the best hyperparameter values. Results demonstrate a +70% increase in
prediction accuracy when exploiting Multi-task learning compared to the individual models. Evi-
dence is revealed that major trends in stock price movements can be transferred effectively between
firms and market sectors. Furthermore, this study identifies market capitalization, volatility, and
sector classification as significant factors influencing the benefits of Multi-task learning. The benefits
can also be extended to time series analysis in other domains, such as healthcare patient monitoring
systems or in energy consumption forecasting.

Keywords: Multi-task Learning (MTL), Long Short-Term Memory (LSTM) Networks, Hyperpa-
rameter Optimization, Stock Prediction, Financial Time Series

1 Introduction

Stock market prediction has always been a major goal for companies and individuals seeking to thrive
in the domain of financial analysis, specifically in investment strategies, risk management, and economic
forecasting. Traditional approaches usually depend on both statistical models and technical indicators,
which tend to fail at capturing the complex and non-linear patterns in stock evaluation movements.
Recent discoveries in the field of deep learning, specifically Long Short-Term Memory (LSTM) networks,
have opened new horizons for a more accurate prognosis of time series in the financial domain.

This research is motivated by two key observations. First, while a stock’s evaluation and price
patterns indicate certain particularities shaped by company fundamentals, they are also influenced by
overall market dynamics, sector performance, and the overall macroeconomic state. Second, effective
training of deep learning models is dependent on huge quantities of data, which may be nonexistent for
newer companies or companies with a shallow trading history.

Multi-task learning is a method in which multiple learning tasks are solved simultaneously, while
exploiting commonalities and differences across tasks. This procedure can be leveraged in our case, where
a model trained on cumulative data from multiple stocks can potentially achieve far better results when
compared to training individual models, in cases where data might be insufficient. Also, this approach
might uncover general trends in market behavior that are not tied to individual firms or industries, aiding
in the understanding of market dynamics.

107

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

1.1 Related work

When it comes to the application of machine learning to financial forecasting, we have made great
strides over the last decade. Early work by Gers et al. [1] showed the capability of recurrent neural
networks for time series forecasting, while subsequently Fischer and Krauss [2] applied Long Short-Term
Memory (LSTM) networks in stock market prediction, achieving superior performance when compared
to classic approaches.

More recently, the focus has turned to hyperparameter tuning of the model architecture. Li et al. [3]
explored different hyperparameter optimization (HPO) methods of LSTM networks for stock prediction
and achieved a significant improvement in prediction accuracy when fine-tuning. In addition, Song et al.
[4] used transfer learning and adaptive HPO, but applied it only to pairs of similar stocks rather than
across a wider set of firms and domains.

Furthermore, hybrid approaches leveraging graph neural networks (GNN) [5] or convolutional autoen-
coders (CAE) [6] have been leveraged for even lower prediction errors in financial forecasting. Selvin et al.
[7] studied stock prediction as identifying the latent dynamics of the evaluation, leveraging RNN, LSTM,
and CNN-sliding window models. This work is complemented by Istiake Sunny et al. [8], applying LSTM
and Bi-Directional LSTM networks. The proposed deep learning approach and HPO process achieved
precise predictions for the stock market.

Jeong and Kim studied the idea of transfer learning in financial domains [9] and showed transfer of
knowledge between similar stocks from the same sector. Merello et al. [10] studied a transfer learning ap-
proach, where the optimization problem was formulated as ”regression of market returns”. This approach
proved beneficial. Building on these ideas, Qiu et al. [11] demonstrated transfer learning across a wide
range of market indices and illustrated that learning on one market could enhance predictive conditions
on other markets.

1.2 Objectives

In spite of these advances, few studies have evaluated the effectiveness of Multi-task learning across
a wider set of stocks or identified specific conditions under which knowledge transfer is beneficial. Also,
comprehensive HPO for Multi-task learning in stock prediction remains underexplored.

Going forward, we will analyze the advantages of multi-task learning across the stock market, glanc-
ing at the different hyperparameter configurations and their implications in the prediction of company
evaluations. We will explore how limited historical data may affect model performance across different
metrics, such as Root Mean Squared Error (RMSE) for accuracy prediction and other such benchmarks.

2 Methodology

2.1 Data aggregation and preprocessing

The financial data for this study is downloaded via the Yahoo Finance API. [12] As mentioned above,
our purpose is to show improvements in prediction accuracy for companies with a short trading history.
For these purposes, we will use only 3 years of closing prices (evaluations at market close), in order to
simulate the lack of historical data. We will use 50 top companies on The New York Stock Exchange from
multiple fields, such as technology (Apple, Google, IBM, Microsoft), e-Commerce and retail (Amazon,
AliBaba, GameStop), finance and asset management (BlackRock, Goldman Sachs), pharmacy (AbbVie,
Pfizer) and others.

All of the data is organized as (x, y) pairs, where x is considered the feature vector and y the label.
In this case, x is a vector consisting of closing prices for a certain stock in the past 60 days (our desired
look-back period), and y is the price value for the following day.

For the train-test split, we reserve 10% of the data for testing model performance. When optimizing
the hyperparameters, we use 20% of the training data for cross-validation; when training the model, we
use just 10%. This approach ensures more reliable estimates for different hyperparameter configurations
while keeping enough data for the actual training. The smaller cross-validation set used for training
ensures more data for the model to learn from while avoiding overfitting.

108

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

When training the Multi-task learning model, we will train on 45 of the 50 companies we have selected.

However, we won’t use all training data for tuning the hyperparameters, as this is computationally
expensive and, in practice, proven to not impact model performance. As a result, a third of the training
data will be used, spread equally over all tickers and the entirety of the time-frame. Finally, we will
test on 5 random stocks that were completely excluded from the training process to prevent information
leakage and selection bias. [15]

Since this model uses an LSTM network, the order in which we feed it data is crucial. Despite this,
for the multi-task model, all the data is shuffled pretraining, disrupting the temporal flow. Despite
this inconvenient approach, the multi-task model still yields better prediction accuracy compared to the
individual models, which feed on temporally ordered data.

The data split can be observed in Figure 1, below (for network training - both models in Figure 1a, for
hyperparameter tuning - individual model in Figure 1b and for hyperparameter tuning - general model
in Figure 1c):

(a) Data split for LSTM network
training - both models

(b) Data split for hyperparameter
tuning - individual model

(c) Data split for hyperparameter
tuning - general model

Figure 1: Data split

2.2 LSTM network architecture and hyperparameters

Both the individual and the multi-task model share the same neural network architecture. The
recurrent neural network starts with one input layer, whose size is the desired look-back distance, followed
by two LSTM layers with forget gates. The first LSTM layer outputs an exit value for every time step in
the input sequence, in order for the second layer to capture the temporal data of the look-back window
better. Given that the second LSTM layer is followed by a simple Dense layer, it outputs just the exit
value for the last time step in the sequence. After each LSTM layer, we introduce Dropout layers for
regularization. We train the model using the Adam optimizer (Adaptive Moment Estimation), which
leverages inertia and other concepts to avoid local minima while being computationally efficient. [16]

Hyperparameter value interval step

lstm units 1 32 – 128 32
dropout rate 1 0.1 – 0.5 0.1
lstm units 2 32 – 128 32
dropout rate 2 0.1 – 0.5 0.1
dense units 20 – 80 20
learning rate {1e-3, 1e-4, 5e-4} -

Table 1: Hyperparameter value intervals and steps

For hyperparameter optimization, the number of neurons in both LSTM layers and the Dense layer is
of interest, as well as the dropout rate after each LSTM layer. Learning rate is also something we want
to fine-tune in this process. All hyperparameter value intervals and steps can be observed in Table 1.
Using these values, we define the hyperparameter space and perform randomized search with 20 trials.

109

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

While batch size was not discussed yet, we manually played with batch fractions of 0.01, 0.005, and

0.001, in order to check for any improvements in model accuracy. Because no real differences were
recorded, all of the results below are generated while running a batch fraction of 0.01.

2.3 System architecture and implementation details

This research was carried out on an Apple Mac Mini, with 10 CPU cores (M4 chip), 10 GPU cores,
and 24 GB of RAM (unified memory). The model was written in Python 3.10 (not the latest, due to
incompatibilities with TensorFlow versions), using TensorFlow 2.18 and Keras 3.9. For hyperparameter
optimization, we will use KerasTuner (version 1.4.7).

The foundation of our research is a simple, 2-layer, LSTM network, implemented below:

def build_lstm_model(hp, input_shape):

model = Sequential()

model.add(Input(shape=input_shape))

model.add(LSTM(units=hp.Int(’lstm_units_1’, min_value=32,

max_value=128, step=32), return_sequences=True))

model.add(Dropout(hp.Float(’dropout_rate_1’, min_value=0.1,

max_value=0.5, step=0.1)))

model.add(LSTM(units=hp.Int(’lstm_units_2’, min_value=32,

max_value=128, step=32), return_sequences=False))

model.add(Dropout(hp.Float(’dropout_rate_2’, min_value=0.1,

max_value=0.5, step=0.1)))

model.add(Dense(units=hp.Int(’dense_units’, min_value=20,

max_value=80, step=20), activation=’relu’))

model.add(Dense(1))

learning_rate = hp.Choice(’learning_rate’, values=[1e-3, 1e-4, 5e-4])

model.compile(optimizer=Adam(learning_rate=learning_rate),

loss=’mean_squared_error’)

return model

All hyperparameters specified above are being set in the code above, using KerasTuner. This network
architecture is used throughout the research, for each stock and for the Multi-task model, with only the
training data changing. The random search for hyperparameter optimization is implemented below:

tuner = kt.RandomSearch(

lambda hp: build_lstm_model(hp, input_shape),

objective=’val_loss’, max_trials=max_trials,

executions_per_trial=executions_per_trial, directory=’hyper_tuning’,

)

tuner.search(X_train, y_train, validation_split=0.2,

epochs=epochs, verbose=verbose)

110

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

The optimization process searches for 20 trials (our desired count) inside the hyperparameter space,

using 10 epochs and a 20% validation split, as mentioned above. The optimization objective is validation
loss, which the process is trying to minimize.

The rest of the code used for this experiment, model training, and result exploration is publicly
available at https://github.com/andreiprb/MTL HPO stock predictor.

3 Individual model performance

As expected, individual model performance falls relatively short, with some particular stocks achieving
Root Mean Squared Errors (RMSE) above 0.2 (20% prediction error). We will later observe that the
cause is the (simulated) lack of trading data. We will evaluate the following stocks, for relevance and
diversity reasons: AbbVie, BlackRock, GameStop, Google and AT&T. Out of the five companies of
interest, AT&T performed most poorly in terms of RMSE, scoring 0.26, followed by BlackRock with 0.15
and AbbVie with 0.12. Google and GameStop performed well in comparison: 0.08 and 0.05 (see Table
5, IM-t). The price predictions can be observed in the plots below:

Figure 2: Individual model performance - ABBV

Figure 3: Individual model performance - BLK

111

https://github.com/andreiprb/MTL_HPO_stock_predictor

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 4: Individual model performance - GME

Figure 5: Individual model performance - GOOGL

Figure 6: Individual model performance - T

112

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

The observation clearly shows the model’s incapacity to completely learn the stocks’ price fluctuations,

as the gray and blue squiggles often fail to overlap. We can see a clear tendency to underevaluate the
price of AbbVie (Figure 2) shares throughout the entirety of the time frame. A similar event is present
for Google, where the model constantly overevaluates the stock price (see Figure 5).

For comparison, we will look at the performance of the GameStop individual model, which performed
significantly better. Despite this, when taking a look at Figure 4, it is evident that the LSTM network
failed to both predict and evaluate the huge price gain at the end of 2021, with a consistent overvaluation
throughout 2023. During 2022, the model managed to correctly capture stock fluctuations, explaining
the low RMSE.

Despite the higher RMSE, BlackRock and AT&T generated good plots (see Figures 3 and 6).

3.1 Hyperparameter observations

When analyzing the chosen hyperparameters, the individual models often opt for denser and last
layers. Given that data is scarce, the tuning process tries to overcome this by increasing the number of
nodes, in hopes of extracting richer feature representations (see Table 2).

This approach is not optimal, and leads to overfitting, which the model tries to fix by implementing
higher Dropout rates and smaller second layers. This is especially visible for the ABBV model, where the
hyperparameter optimization process chose the same rates of 0.5 and 0.4. In general, the hyperparameters
were found to take identical values, despite tuning them on three different batch sizes.

Model performance also didn’t really depend on batch size, with some models, like AbbVie and AT&T,
performing better on lower batch sizes, while other models did the reverse, like BlackRock or Google.

RMSE
(normalized)

Stock LSTM
units 1

Dropout
units 1

LSTM
units 2

Dropout
units 2

Dense
units

Learning
rate

0.1327 ABBV 96 0.5 128 0.4 40 0.001
0.1488 BLK 128 0.1 96 0.1 40 0.001
0.0837 GME 96 0.5 64 0.3 60 0.001
0.0993 GOOGL 128 0.3 96 0.5 80 0.001
0.2571 T 128 0.2 96 0.1 60 0.001

Table 2: Individual models’ hyperparameters and performance

4 Multi-task model performance

Just by looking at the plots below (Figures 7 to 11), we can see significant improvement in prediction
accuracy. Training on notably more data proves to greatly aid the learning process. Overall, we see a
+70% increase in prediction accuracy compared to the individual models. Note that these 5 companies’
data was not used while training the model, and that model architecture is identical.

We can observe that multi-task learning completely fixed some of the problems mentioned above,
like the consistent undervaluation/overvaluation present in the evaluation of AbbVie and Google stocks.
Moreover, in the cases of AbbVie and GameStop, given the abundant training set, the model managed
to predict the price spikes better.

One mistake of the multi-task learning model we can observe is GameStop’s overvaluation before
2021. This can be traced to both the small stock price compared to the general market and the overall
market growth. More complex systems can easily fix this error.

4.1 Hyperparameter observations

As there is more training data, we notice dropout rates decreasing significantly, as the vaster volume
of training data reduces the risk of overfitting. The fine-tuning process finds the same hyperparameters
as optimal, despite using only 30% of the data for the process. Learning rate does not suffer any change
between the individual model and this one.

113

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

LSTM
units 1

Dropout
units 1

LSTM
units 2

Dropout
units 2

Dense
units

Learning
rate

128 0.2 128 0.2 20 0.001

Table 3: MTL models’ hyperparameters

ABBV BLK GME GOOGL T

Normalized 0.0277 0.0360 0.0208 0.358 0.0562
Original $2.23 $21.51 $1.79 $3.46 $0.42

Table 4: MTL models’ RMSE for test stocks

Figure 7: MTL model performance - ABBV

Figure 8: MTL model performance - BLK

114

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 9: MTL model performance - GME

Figure 10: MTL model performance - GOOGL

Figure 11: MTL model performance - T

115

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Stock Model RMSE
(normalized)

RMSE
(original)

MAE
(original)

MAPE

ABBV MTL 0.0227 $2.36 $1.57 1.54%
IM-t 0.1233 $12.83 $5.88 4.17%
IM-T - - $3.15 2.99%

BLK MTL 0.0360 $21.51 $12.20 1.95%
IM-t 0.1473 $88.10 $18.14 3.01%
IM-T - - $14.21 2.26%

GME MTL 0.0208 $1.79 $2.68 34.35%
IM-t 0.0523 $4.51 $3.21 13.62%
IM-T - - $2.47 13.36%

GOOGL MTL 0.0358 $3.46 $2.10 2.02%
IM-t 0.0849 $8.21 $5.80 6.25%
IM-T - - $3.57 3.49%

T MTL 0.0562 $0.42 $0.25 1.57%
IM-t 0.2555 $1.92 $0.28 1.86%
IM-T - - $0.23 1.42%

Table 5: Full experiment metrics & results (1)

Stock Model Direction
accuracy

Maximum
error

Strategy
return

Buy & Hold
return

ABBV MTL 50.00% $9.57 42.82% 144.95%
IM-t 54.41% $11.57 5.06% 14.83%
IM-T 52.00% $14.72 51.65% 109.30%

BLK MTL 51.17% $80.76 49.06% 67.89%
IM-t 44.12% $82.90 10.42% 20.08%
IM-T 55.04% $67.85 61.16% 41.58%

GME MTL 50.29% $67.31 3226.45% 1908.77%
IM-t 39.71% $6.22 -18.18% -25.79%
IM-T 52.32% $62.15 3300.35% 2843.56%

GOOGL MTL 48.56% $12.69 -39.77% 54.32%
IM-t 44.12% $16.13 -13.46% -11.67%
IM-T 49.44% $13.67 19.48% 73.22%

T MTL 47.55% $1.56 -11.63% 2.47%
IM-t 50.00% $1.26 7.70% 15.63%
IM-T 48.48% $1.47 -16.83% -11.32%

Table 6: Full experiment metrics & results (2)

116

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

5 Comparative analysis of all test metrics

Tables 5 and 6 capture the full experiment metrics and results, which we will analyze below. Consider
the following notations:

• MTL - Multi-task learning model

• IM-t - individual model - testing set

• IM-T - individual model - training set

We have previously discussed the huge improvement in RMSE when using the MTL approach. Train-
ing RMSE for individual models is not of interest, but it can easily be computed with some simple tweaks
to the code. Note that for the values expressed in $USD, the price range plays an important role in
drawing insights. While BlackRock presents a bigger Mean Absolute Error (MAE), this is due to the fact
that its stock valuation sits somewhere between $300 and $900 during the experiment period (see Figure
8). Similarly, there is a huge disparity between GameStock’s train and test Maximum Error: $62.15
vs. $6.22. This can be traced to the fact that the individual model’s test set excludes most of the high
fluctuations and the price spikes (see Figure 4). A more detailed analysis of all metrics follows.

Regarding MAE, we can see the Multi-task learning model performing at least, if not better than the
individual model. Note that the metrics computed for the MTL model are done on unseen test data.
Knowing this, the model’s performance compared to the individual model’s performance on its training
data is very impressive, with the gap to the individual test set performance being even bigger. This trend
can be observed also by analyzing Mean Absolute Percentage Error (MAPE), where the individual model’s
test performance falls short compared to the training performance and the MTL model’s performance.
One exception can be spotted for GameStop, where Multi-task learning appears to perform much worse.
This is caused by the fact that the entire period is considered as the test set. Because of this, the huge
price spike significantly altered the mean of the data, skewing the calculations.

Direction accuracy and Maximum error didn’t show any constant trends between the three models,
but inferences can definitely be drawn on an extended test set. The GameStop phenomena is also
present here. One intriguing observation can be made regarding AT&T, where the individual model
made a smaller maximum error compared to the MTL model. Generally, though, the Multi-task learning
approach proved to have similar performances to the training set performance.

As expected, a simple trading strategy return, where we buy when the model predicts a price increase
and sell when it predicts a fall, proves to work worse than just buying and holding on to the shares.
This was expected, since the purpose of our study, and, by extension, our model, was to analyze time-
series prediction, not to use it for stock brokerage. Again, due to the high price rise and fluctuations of
GameStop’s evaluation, the models actually managed to outperform the buy & hold strategy, but this is
a mere coincidence and should not be taken as proof of our model’s trading capabilities.

6 Conclusions and further developments

In conclusion, this study exemplifies the promising applications of Multi-task learning using LSTM
networks for this specific market setting. By using a wide variety of stocks to train a generalized model,
overall market trends can be captured, which counteracts the issues that arise when there is limited
trading history among newer companies. Hyperparameter optimization also improves prediction accuracy
immensely on new, unseen stocks.

Not only do these results validate the proposed Multi-task learning approach’s effectiveness in the
finance domain, but they also open avenues for the application of this methodology to other domains,
including patient monitoring in health care or energy consumption forecasting.

For further developments, the model’s architecture can be tweaked further. Using powerful machines,
complete case studies can be made on the entire stock market, using all sorts of data and metrics (not just
closing price). As a fix to the disrupted temporality of the dataset, we will experiment with approaches
leveraging convolutions (CNNs), where an entire day of information is merged into a single data unit.

117

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Acknowledgments: This research was substantially shaped by Associate Professor PhD Bocu

Răzvan and Assistant Professor Boca Liana Luminiţa from the Department of Mathematics and Computer
Science, Faculty of Mathematics and Computer Science, Transilvania University of Bras,ov, Romania.

References

[1] F. A. Gers, J. Schmidhuber, & F. Cummins. Learning to forget: Continual prediction with LSTM.
Neural Computation, 12(10): 2451–2471, 2000.

[2] T. Fischer, & C. Krauss. Deep learning with long short-term memory networks for financial market
predictions. European Journal of Operational Research, 270(2): 654–669, 2018.

[3] Y. Li, W. Zheng, & Z. Zheng. Deep robust reinforcement learning for practical algorithmic trading.
IEEE Access, 7: 108014–108022, 2019.

[4] Y. Song, J. W. Lee, & J. Lee. A study on novel filtering and relationship between input-features and
target-vectors in a deep learning model for stock price prediction. Applied Intelligence, 51(2): 885–909,
2021.

[5] M. S. Sonani, A. Badii, & A. Moin. Stock Price Prediction Using a Hybrid LSTM-GNN Model:
Integrating Time-Series and Graph-Based Analysis. arXiv preprint arXiv:2502.15813, 1-13, 2025.

[6] H. Liu, L. Qi & M. Sun. Short-Term Stock Price Prediction Based on CAE-LSTM Method. Wireless
Communications and Mobile Computing, 1-7, 2022.

[7] S. Selvin, et al. Stock price prediction using LSTM, RNN and CNN-sliding window model. In-
ternational Conference on Advances in Computing, Communications and Informatics (ICACCI),
1643-1647, 2017.

[8] M. A. Istiake Sunny, M. M. S. Maswood & A G. Alharbi, Deep Learning-Based Stock Price Prediction
Using LSTM and Bi-Directional LSTM Model. 2nd Novel Intelligent and Leading Emerging Sciences
Conference, 87-92, 2020.

[9] Y. Jeong, & S. Kim. Improving financial trading decisions using deep Q-learning: Predicting the num-
ber of shares, action strategies, and transfer learning. Expert Systems with Applications, 117: 125–138,
2019.

[10] S. Merello, et al. Ensemble Application of Transfer Learning and Sample Weighting for Stock Market
Prediction. International Joint Conference on Neural Networks (IJCNN), 1-8, 2019.

[11] J. Qiu, B. Wang, & C. Zhou. Forecasting stock prices with long-short term memory neural network
based on attention mechanism. PLoS ONE, 15(1): e0227222, 2020.

[12] R. Aroussi. yfinance: Yahoo! Finance market data downloader. (last accessed: 25.03.2025). Available
at: https://github.com/ranaroussi/yfinance

[13] F. A. Gers, & J. Schmidhuber. LSTM Recurrent Networks Learn Simple Context Free and Context
Sensitive Languages. IEEE Transactions on Neural Networks, 12(6): 1333–1340, 2001.

[14] X. Shi, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation
Nowcasting. Proceedings of the 28th International Conference on Neural Information Processing
Systems, 802–810, 2015.

[15] F. Karl, et al. Multi-Objective Hyperparameter Optimization in Machine Learning – An Overview.
arXiv preprint arXiv:2403.07438v3, 4, 2024.

[16] D. P. Kingma, & J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 1, 2014.

Andrei PRIBOI
Transilvania University of Braşov
Faculty of Mathematics and Computer Science
No. 50, Iuliu Maniu st., Bras,ov, Romania
ROMANIA
E-mail: andrei.priboi@student.unitbv.ro

118

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Game Engine Development: Research, optimization and

performance enhancement

Serkan Sadulov, Mustafa Mustafov

Abstract

This paper reviews the process of developing a game engine and explores the methodologies of

development, best practices, and challenges involved in creating such software. This study provides an

in-depth analysis of the tools, frameworks, and design patterns used for development, along with real-

world examples of code and assets utilized throughout the process. Special attention is given to

performance considerations, rendering techniques, physics simulations, and scripting integration to

ensure a comprehensive understanding of the development workflow. Furthermore, this research

presents a hands-on demonstration of the final product, showcasing the engine's capabilities and

potential applications for game developers

1 Introduction

The game engine serves as a platform for developing video games, creating animated films,

and running complex simulations. It integrates a wide range of essential functionalities including

real-time graphics rendering, audio processing, physics simulation, artificial intelligence, and

networking. Over the years, numerous game engines and development tools have emerged, such

as Unity, Unreal Engine, Godot, and various proprietary engines developed by major studios.

Although these engines offer powerful features and have become industry standards, they still

have limitations in terms of optimization, flexibility, and high resource consumption. Recognizing

these shortcomings, the decision was made to develop a new and improved game engine that not

only enhances performance, but also pushes the boundaries of what is possible in game

development.

Without a game engine, developers would have to write complex low-level codes that are not

only time-consuming but also inefficient. Using a game engine, developers can focus on designing

gameplay mechanics, storytelling, and immersive worlds without reinventing core functionalities

that have already been optimized by engine developers.

2 Fundamentals of Game Engine Development

2.1 Overview of game engine architecture

Our game engine was developed using C++20, which leverages modern programming

techniques to ensure high performance, maintainability, and scalability. It is designed with Vulkan

as its primary rendering backend, taking advantage of low-level access to GPU resources for

119

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 optimal rendering efficiency. However, the engine is built with a fully modular architecture,

allowing additional rendering options such as DirectX to be integrated seamlessly without

significant rework.

The modular design extends beyond rendering; a core component of the engine, from physics

to audio, is structured as an independent module. Each module was compiled separately and then

integrated into the core framework to ensure flexibility, maintainability, and ease of extension.

This approach allows for the independent development, testing, and optimization of each

subsystem without affecting the entire engine.

Furthermore, engine modules are interconnected, enabling seamless communication between

different systems. For instance, the 2D physics module directly interacts with the rendering

system to display the debug collider bounds, ensuring that developers have clear visual feedback

when working with physics simulations. This modular architecture provides a solid foundation for

a powerful and extensible game engine that can adapt to various needs and technologies with

minimal effort [1].

2.1.1 Key technologies used in our Game Engine

To develop our game engine, we carefully select a range of key technologies that provide

optimal performance, flexibility, and scalability. Each component was chosen to ensure the

highest level of efficiency and ease of integration, while maintaining a modular and extensible

architecture. Below is a detailed breakdown of the core technologies used in our engine [5]:

• C++20 as the Main Programming Language: Our engine was built using C++20, taking

advantage of its modern features, such as concepts, ranges, coroutines, and improved memory

management. Language’s high-performance nature and fine-grained control over system

resources make it an ideal choice for developing a game engine. By utilizing C++20, we

ensure that our engine remains efficient, scalable, and capable of handling complex real-time

computations with minimal overheads.

• Vulkan for Rendering: Vulkan serves as the primary rendering API for our engine, providing

low-level access to GPU resources and enabling fine-tuned optimization for high-performance

graphics. Unlike traditional APIs such as OpenGL, Vulkan allows for better multithreading,

reduced CPU overhead, and explicit memory management, resulting in superior rendering

efficiency. However, owing to our modular design, alternative rendering backends, such as

DirectX, can be integrated with minimal effort if needed [3].

• Box2D for 2D Physics Simulation: To handle 2D physics, we integrated Box2D, a

lightweight yet powerful physics engine known for its accuracy and reliability. Box2D is

widely used in the gaming industry because of its robust collision detection and realistic

physics simulations. It provides essential features, such as rigid body dynamics, contact

resolution, and joints, ensuring smooth and natural interactions for 2D game elements.

• Jolt Physics for 3D Physics Simulation: For 3D physics, our engine utilizes Jolt Physics,

which is a high-performance physics library designed for real-time applications. Jolt offers

efficient and stable physical simulations, including rigid-body dynamics, soft-body

simulations, and character controllers. It is optimized for modern hardware, ensuring a smooth

performance even in complex scenes with a large number of objects. By leveraging Jolt, our

engine delivers realistic and responsive physical interactions in three-dimensional (3D)

environments.

• MiniAudio for Audio Processing: Our engine’s audio system is powered by MiniAudio, a

lightweight cross-platform audio library that supports multiple formats and playback features.

MiniAudio provides a simple yet powerful API for handling 3D spatial audio, sound effects,

and music playback, with minimal latency. Its low-level design allows us to integrate it tightly

into our engine while maintaining full control over audio processing and performance

optimization.

120

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 • ImGui for User Interface (UI): For the graphical user interface of the engine, we integrated

ImGui (Immediate Mode GUI), a fast and flexible UI library designed for real-time

applications. ImGui enables rapid prototyping and tool development, and provides an intuitive

and highly responsive interface for debugging, in-engine editors, and developer tools. Its

lightweight nature ensures minimal impact on performance while allowing the creation of

powerful and user-friendly UI elements [6].

• Custom Reflection Framework (Reflexion) for Scripting: Instead of relying on external

scripting languages, such as Lua or Python, we have developed our own custom reflection

framework, Reflexion, which allows us to use C++ itself as a scripting language. Reflexion

enables runtime type introspection, dynamic property modification, and serialization,

providing an efficient way to expose engine functionalities to scripts without compromising

performance. This approach ensures seamless integration with the existing C++ code, while

offering a robust scripting solution tailored to our engine’s needs.

• EASTL as a Replacement for STL: To improve performance and memory efficiency, we

replaced the standard C++ STL (Standard Template Library) with EASTL (Electronic Arts

Standard Template Library). EASTL was optimized for game development, offering faster

container operations, better memory management, and reduced heap fragmentation. By using

EASTL, we ensure that our engine benefits from optimized data structures that enhance

overall performance, particularly in real-time applications.

• Google Test (GTest) for Unit Testing: Ensuring the reliability and stability of our engine is

crucial, which is why we utilized Google Test (GTest) as our primary testing framework.

GTest provides a robust and flexible environment for writing and executing unit tests,

allowing us to validate individual engine components and detect issues early in development.

With automated testing, we can maintain a high code quality and ensure that each system

behaves as expected under different scenarios.

3 Core Systems of a Game Engine

3.1 Rendering System

The rendering system is a core component of any game engine and is responsible for

converting the game world’s data into images that are displayed on a screen. It involves

several stages, from loading assets to applying shaders and lighting, and finally, r endering the

scene in real time [7].

3.1.1 Rendering Pipelines

The rendering pipeline is a sequence of stages (Fig. 2), through which the engine

processes graphical data to produce the final image (Fig. 1).

121

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 1: Partial mesh rendering code

Figure 2: Graphics pipline scheme

122

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3.1.2 Real-Time Rendering Techniques

Real-time rendering aims to produce visually rich images at high frame rates, which is

critical for interactive applications, such as video games. Several advanced techniques have

been used to achieve high-quality real-time graphics [8].

3.1.2.1 Physically Based Rendering (PBR)

PBR is a shading model that simulates the interaction of light with surfaces in a way that

more accurately represents real-world materials. It models how light interacts with roughness,

reflectivity, and other surface properties to produce realistic results. PBR uses the principles

of energy conservation, ensuring that materials behave consistently under different lighting

conditions. It has become a standard technique in modern game engines due to its ability to

produce photorealistic visuals across different lighting environments and hardware

configurations. The key components of PBR include (Fig. 3):

• Albedo (Diffuse): The color of the material.

• Metallic: A value indicating whether the material is metallic or not.

• Roughness: The smoothness or roughness of the surface affects light scattering.

• Normal Maps: Used to add fine details to the surface without adding extra polygons.

Figure 3: Partial code of PBR pipeline

3.1.2.2 Shadows

Shadows are crucial for adding depth and realism to scenes. In real-time rendering, in our

engine, we used cascade shadow mapping (CSM), Spotlight Shadow Mapping and Point Light

Shadow Mapping (Fig. 4):

• Cascaded Shadow Maps (CSM) is the variation in the shadow mapping used for large

outdoor environments. It uses multiple shadow maps for different view distances, ensuring

that shadows are rendered with high detail close to the camera and less detail farther away.

123

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 • Spotlight shadow mapping was designed for light with a conical shape that emits light in a

specific direction, similar to a real-world spotlight. This technique involves rendering the

scene from the perspective of the spotlight’s view, which allows the shadow map to capture

only the area within the spotlight's cone of influence.

• Point Light Shadow Mapping used for light that emits light in all directions, similar to a

light bulb. This type of lighting is ideal for simulating omnidirectional light sources that affect

an entire environment.

Figure 4: Code of shadow calculation of diractional light, without filltering

3.2 Physics and Collision Detection

Physical simulation plays a crucial role in modern games, enhancing realism by

accurately simulating the physical interactions between objects in the game world. From

character movement and gravity to object collisions and destructible environments, a robust

physics engine ensures that these interactions behave in a manner that is both believable and

responsive to the player. In this section, we explore the physics simulation techniques used in

our engine, including the collision-detection algorithms and the decision to integrate Box2D

as our primary 2D physics engine [2].

124

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3.2.1 Collision detection algorithms

Collision detection is one of the core components of physics simulations, as it allows

objects to interact with one another in a meaningful way. The main goal of collision detection

is to determine whether two objects intersect or come into contact with each other, and i f so,

to calculate the response [4].

• AABB (Axis-Aligned Bounding Box) is a simple and efficient collision detection

algorithm used to detect potential overlaps between rectangular objects in 2D. Each

object is enclosed by an axis-aligned box, which is easier to compute than general

bounding volumes. AABB checks if the boxes of two objects intersect by comparing their

minimum and maximum coordinates along the X and Y axes. This approach is fast and

commonly used for broad-phase collision detection to filter out objects that are far apart

and cannot possibly collide (Fig. 5).

Figure 5: Code of AABB overlap

• Raycasting is another essential algorithm used for detecting collisions along a path, often

in the context of shooting mechanics or line-of-sight detection. A ray is projected from a

starting point in a specific direction and the engine checks for intersections with objects

along the path of the ray. Raycasting is especially useful for detecting collisions with

walls or obstacles in first-person games or determining where objects in the environment

intersect with player actions (Fig. 6).

125

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 6: Code for Raycasting

3.2.2 Box2D for 2D Physics

Rigid Body Simulation: Box2D accurately simulates the motion of rigid bodies in response to

forces such as gravity, friction, and user input. It supports both dynamic bodies, which move and

interact with other objects, and static bodies, which are immovable but can collide with dynamic

objects (Fig. 7).

Figure 7: Example code of creating a rigid body

Joints: Box2D offers a wide variety of joint types, including revolute joints (like hinges),

prismatic joints (like sliders), and distance joints, enabling complex interactions between objects. This

makes it ideal for simulating various mechanical systems, such as vehicles, ropes, or even character

animation through physics-based rigging (Fig. 8).

126

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 8: Code of distance joint

3.3 Scripting System

A scripting system is a vital component of any modern game engine, allowing developers to

implement game logic, AI behavior, and interactive elements without modifying the core engine code.

For our engine, we designed a custom reflection-based scripting system called Reflexion, which

allows C++ to be used as scripting language. This system enables game developers to write high-level

game logic in a dynamic manner while still benefiting from the raw power and performance of C++

(Fig. 9). Reflexion provides an abstraction layer for scripting, making it easier to modify gameplay

mechanics without modifying the engine core (Fig. 10).

127

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 9: Scripting code header

128

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 10: Custum scripting example for player behaviour

129

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3.4 Entity-Component System (ECS)

ECS (Entity Component System) is a data-oriented design which binds together everything in the

game engine. It provides precise control over every game object and allows for the creation of scalable

systems owing to its high performance. Each object in the game world, known as the Game Object, is

referred to as an entity. An Entity can contain multiple components. A Component is a structure that

holds specific information, such as image and sound. This information is processed by the systems to

realize its intended functionality. A System is essentially a process that acts on the data for specific

components. For example, the Physics system acts on all Entities with RigidbodyComponent by

calculating their mass, velocity and then applying a change in TransformComponent based on the

results.

3.5 User Interface (UI)

A well-designed User Interface (UI) is essential for modern game engines, as it provides

developers with an intuitive way to interact with tools, debug features, and configure game settings. In

our game engine, we used Dear ImGui, a highly efficient immediate-mode GUI library, to create a

responsive and easy-to-use interface for the engine tools (Fig. 11).

Figure 11: User interface of the game engine

 The images show the user interface of the engine editor, where developers can efficiently

manage properties through a custom reflection library integrated with the entity component system.

This system enables a structured and dynamic approach to handling components and their attributes

(Fig. 12).

130

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Figure 12: User interface of the game engine

3.6 Performance optimization

Throughout the development of the game engine, several key decisions were made with

performance optimization as a priority. In this section, we summarize and compare the optimization

techniques and architectural choices that led to measurable performance gains:

• Rendering Efficiency with Vulkan vs. OpenGL: By choosing Vulkan as main rendering

backend, we achieved significant reductions in CPU overhead and improved multithreading

performance. In internal benchmarks, scenes rendered using Vulkan performed 20–30% faster

than equivalent OpenGL implementations due to its low-level GPU access and better memory

management.

• EASTL vs. STL: Replacing the Standard Template Library (STL) with EASTL significantly

reduced memory fragmentation and improved container operation speed, especially in

scenarios with frequent allocation/deallocation of game objects.

• Custom Scripting with Reflexion: Using Reflexion for scripting avoids the overhead of

external scripting engines (e.g., Lua or Python). Reflexion enables runtime access and

manipulation of properties while staying within the high-performance bounds of C++.

4 Conclusion

We decided to develop our own game engine because existing options, while powerful, are often

inefficient and do not fully meet our needs. Many popular engines available today have unnecessary

overhead, restrictive licensing models, and limitations that hinder customization and optimization. We

believe that game development can perform better with a more efficient, flexible, and well-optimized

engine that provides developers with greater control over core functionalities. By creating our own

engine, we aim to improve performance, streamline workflows, and introduce innovative features that

enhance the overall development process. Our goal is not just to build another engine but to push the

boundaries of what is possible in game development.

131

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 References

[1] Sadulov S., M. Mustafov, K. Shoilekova (2023). GAME ENGINE AND ENGINE COMPONENTS

DESIGN AND DEVELOPMENT Reports Awarded with "Best Paper" Crystal Prize'23, 62nd Annual

Scientific Conference - University of Ruse and Union of Scientists, , 173 - 178

[2] Sadulov S., M. Mustafov, K. Shoilekova (2024). Advantages and Disadvantages of developing a

System for Interaction Between the Player and the Game Environment in the Game Eternal Vigil

Reports Awarded with "Best Paper" Crystal Prize .

[3] Sellers, G., & Kessenich, J. (2016). Vulkan programming guide: The official guide to learning vulkan.

Addison-Wesley Professional.

[4] Parberry, I. (2017). Introduction to Game Physics with Box2D. CRC Press.

[5] Gregory, J. (2018). Game engine architecture. AK Peters/CRC Press.

[6] Knoblauch, J., Sethuraman, A., & Hey, J. (2017). IMGui—a desktop GUI application for isolation with

migration analyses. Molecular Biology and Evolution, 34(2), 500-504.

[7] Akenine-Moller, T., Haines, E., & Hoffman, N. (2019). Real-time rendering. AK Peters/crc Press.

[8] Engel, W. (Ed.). (2014). GPU Pro 5: advanced rendering techniques. CRC Press.

Acknowledgement: This work was supervised by associate professor Kameliya Shoylekova, from

University of Ruse, department of Natural science and education, Ruse, Bulgaria.

Serkan Sadulov

University of Ruse

Natural science and education

Bulgaria

E-mail: s216261@stud.uni-ruse.bg

Mustafa Mustafov

University of Ruse

Natural science and education

Bulgaria

E-mail: s216259@stud.uni-ruse.bg

132

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Evaluating Log Messages Using a Big Data Approach

Tobias Schneider

Abstract

Large log files, with hundreds of thousands of entries, can get hard to monitor. Due to the sheer
size of the file, detecting if a system is to be considered in an error-state and finding the underlying
root-cause gets increasingly challenging. This paper addresses the issues by detecting if the system
is in an error-state, using the exponential moving average algorithm and providing a pattern-based
proposal of the root-cause by employing a suffix array. The introduced log analyzing system is able
to query the log file in various manners, speeding up analysis. Measurements, using log messages of
a simulated microservice environment, showed that the approach introduced in this paper enhances
user-driven analysis significantly. In numbers, for a log file with over 400,000 entries, it enables the
operator of the log analyzing system to be 34 times faster in finding meaningful patterns, such as the
most repeated message.

1 Introduction

Log files can quickly expand in volume by creating different types of log messages, resulting in data sets
increasing in size and complexity [1]. In some cases, this can reach up to 120 million messages per hour,
making it difficult and labor-intensive to identify meaningful insights[2]. However, efficiently capturing
and analyzing log messages is crucial to prevent outages and diagnose potential errors, since log messages
state information in regard to the state of the system [3, sec. 2.1]. While solutions have been proposed to
manage log messages using big data technologies [4], extracting operational profiles from log messages via
suffix arrays [5], and using neural networks to detect anomalies [6], this work addresses those challenges
by introducing an automated, pattern-based approach without having to train a machine-learning model
first. In terms of this paper, it is assumed that the monitored environment does not stop running once
an error is encountered, but keeps producing log messages that have to be handled. Specifically, this
work considers incoming new log messages as an online problem and treats the log messages for analysis
as strings, which allows the use of existing algorithms designed for these cases. The novel log analyzing
system introduced in this paper, is based on a combination of the exponential moving average algorithm
(EMA) and a suffix array. It performs two main functions: first, it reads a log file containing informational
and error messages, initiates auto-analysis and provides querying options once a predefined threshold is
reached. Second, it processes log files consisting solely of error messages to generate auto-analysis and
enable queries. It is important to note that the objective is not to achieve absolute error detection, but
rather to provide a first recommendation and assistance tool for supporting the identification of outages
and their underlying causes.

The remainder of the paper is structured as follows: Section 2 provides a brief introduction and
definition of the used terminology and technology. A structured overview of the log analyzing system, as
well as the ways it can be queried is provided in section 3. Additionally, section 3 introduces the format
of the log messages used. In section 4, the detailed concepts and novel approaches developed for the
analysis of log messages are described. Section 5 shows the measured time using the log analyzing system
and compares it to pure user-driven analysis. The final section 6, concludes the work of this paper and
gives an outlook on how it can be used in future directions of study.

133

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

2 Technology Fundamentals

2.1 Big Data

According to the National Institute of Standards & Technology (NIST), Big Data consists of extensive
datasets, primarily in the characteristics of volume, variety, velocity, and/or variability [7, p. 6]. As
outlined in section 1 log files can hold a huge amount of log messages and are therefore considered Big
Data. For the scope of the paper, the focus lays mainly on the volume and velocity part, by addressing
the frequency of the incoming log messages as velocity and the amount of log messages (and therefore
the size of the corresponding log file) as volume.

2.1.1 Treating Incoming Log Messages as an Online Problem

An online problem is a setting, where incoming data is considered as a stream, with each item arriving
one at a time. Upon arrival, it has then to be processed without knowing future items; the algorithms
tackling this setting are called online algorithms [8]. By abstracting the problem of handling incoming
log messages to an online problem, it allows the use of online algorithms, such as the exponential moving
average algorithm.

2.1.2 Treating Cumulated Log Messages as a String

String algorithms constitute a well-researched domain, extensively covered in literature such as Gus-
field [9]. By treating the log file under analysis as a string, these established algorithms can be leveraged.
This approach facilitates the application of string-based algorithms to analyze large volumes of log data
effectively.

2.2 Exponential Moving Average Algorithm

The exponential moving average algorithm is an online algorithm that re-calculates the average for each
new element by only using a weight α and the previous calculated EMAt−1[10]. The EMA is defined in
Brown [11, p. 3] as follows:

EMA0 = x0,

EMAt = α · xt + (1− α) · EMAt−1, 0 ≦ α < 1
(1)

The parameter α is controlling how much weight is given to the most recent object, compared with all
previous ones [10]. The EMA is highly memory efficient, as it is only necessary to maintain the record of
the last computation [11, p. 3].

2.3 Suffix Array

In order to answer the question what is the longest common factor of two given strings, the suffix tree data
structure was developed [14, p. 241]. A suffix tree is defined as a rooted directed tree for an m-character
string S with exactly m leaves numbered 1 to m. Essentially covering all possible suffixes of S [9, p. 90].
As a more memory-efficient alternative, Manber and Myers [15] proposed a data structure called suffix
array, requiring three to five times less space [15, p. 1], while solving the substring problem or exact
matching almost as efficiently as the suffix tree [9, p. 149]. Gusfield formally defines the suffix array as
follows:

Definitie 1 “Given an m-character string T, a suffix array for T, called Pos, is an array of the integers
in the range 1 to m, specifying the lexicographic order of the m suffixes of string T.” [9, p. 149]

Meaning that the first element in the suffix array is the integer value of the starting point of the lexically
smallest suffix, followed by the second smallest and so on. At the end of the string a $ is added as a
terminal symbol and given the lexical smallest value [9, p. 149]. The suffix array can then be extended by

134

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

the longest common prefix (LCP), that is the length of the common prefix of two suffixes [9, p. 152]. For
example, the lcp(i, j), where i = na$ and j = nana$, is 2. Those values can be stored in an additional
array LCP of size N = |T | [14, p. 242]. LCP[0] is set to 0 and LCP[i] = lcp(APos[i−1], APos[i]),
1 ≤ i ≤ N − 1 [15, p. 9], where A refers to the string value of the substring starting at i. Figure 1
illustrates the suffix array and its corresponding LCP values for the string banana$.

No. Suffix
1 banana$
2 anana$
3 nana$
4 ana$
5 na$
6 a$
7 $

(a) Suffixes of banana$

No. Suffix lcp
7 $ 0
6 a$ 0
4 ana$ 1
2 anana$ 3
1 banana$ 0
5 na$ 0
3 nana$ 2

(b) Suffix array and LCP for the word banana$

Figure 1: Suffixes for the word banana$

Based on the values stored in the LCP array, the longest repeated substring can be acquired; that is
finding the longest substring that appeared at least twice in the text [16, p. 875]. Obtaining the longest
repeated substring is done by determining max{LCP} [16, p.876]. Additionally, counting the occurrence
of a sequence is possible by finding that sequence and counting the number of neighboring LCP values
until a smaller value is reached [5, sec. 4.3]. Due to the sorted nature of the suffix array it is possible to
identify all occurrences of a word W of length P ≤ N in Θ(P logN) time by utilizing binary search [15,
p. 3]. Considering the LCP values during the search, reduces the runtime to Θ(P + logN) [15, p. 5]. To
construct the suffix array and its corresponding LCP array, various algorithms exist, differing in runtime
and memory usage [17]. Still, optimizing the creation remains a current field of study [18].

3 Setup

3.1 Setup of the Log Analyzing System

As described in section 1 the log analyzing system is able to be utilized in two manners. One is to
detect if the system under analysis is in an error-state by calculating the current success-ratio, that is
the ratio between informational and error messages. The moment the error-state is detected, it starts
the analysis based on a sliding window of the last n error messages. As the size of n is highly dependent
on the monitored environment, it has to be determined for each monitored environment individually.
This is called live-monitoring. The second manner, called post-analysis, is to provide a log file consisting
solely of error messages on which the analysis is then started directly. An illustration of the possible
ways to employ the log analyzing system can be found in Figure 2. In terms of this paper, analysis is
a pattern-based proposal of the root-cause (auto-analysis) and the offering of ways to query the error
messages (user-driven analysis).

135

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Monitored Environment

Sends log messages
Live-monitoring

Error Logs
Manually inserted

Post-analysis

Log Analyzing System

Error-State Detection
(EMA)

Saves last n error messages

Log Analysis
(Suffix Array)

Operator

in error-state

auto-analysis queries

Figure 2: Overview Log Analyzing System

3.2 Format of the Log Messages

The log messages used for this work have been conducted by employing a simulated microservice envi-
ronment, consisting of four microservices, that communicate circularly. The microservices state, by using
a logging framework, if their operations were successful or not. The framework is based on JavaScript
Object Notation (JSON) and comprises a timestamp, log level, service name, message, and region field.
The message field is the only field that can be freely set by the microservice. The log level can either be
Info or Error. The region field states in which geographical region the microservice runs. An example
log message looks like this for the log level Info:

{"timestamp": "2025-01-02T15:52:32.078453Z",

"logLevel": "Info",

"serviceName": "MS1",

"message": "Task 1 succeeded",

"attributes": {

"region": "eu-central-1"

}}

4 Development

Note, that the methods described in this section rely on the format of the log messages introduced in
section 3.2. However, all of them can easily be adjusted to another JSON-based logging framework.

4.1 Error-State Detection

Pursuant to the description of the setup of the log analyzing system in section 3.1 it is essential to design
an algorithm that quantifies the current success ratio of the system, monitoring if it remains above a
predefined threshold. This threshold can be conceptualized as the minimum percentage value, which
is derived as the average ratio of Info to Error log messages. The algorithm should be designed to
prioritize newer log messages, assigning them a higher weight compared to older messages. To fulfill

136

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

this requirement, the exponential moving average algorithm, introduced in section 2.2 has been selected.
For each new incoming log message, the current average is recalculated in accordance to Equation 1.
Depending on the log level of each message, the current xt value can assume two values: 1, if the message
is of level Info or 0, for Error. As α is the parameter that controls how much weight is given to the most
recent observation, compared with all previous observations [10], it is advisable to set it to a relatively
low value. This prevents a significant drop in the success ratio in case of a few consecutive error messages.
In accordance with Brown, the value of α was set to 0.1 [11, p. 10]. Finding a general proposal for α goes
beyond the scope of this paper. To consider the monitored environment in an error state, the current
success ratio (xt) has to be below the threshold for a pre-defined consecutive number of times. This
is based on the notion that it may not be desirable for an alarm to be triggered immediately upon the
application attaining a particular critical point. Rather, it may be preferable for the alarm to be triggered
after a designated interval, thereby ensuring that the cause of the drop is not merely a handful of error
messages. As this is highly dependent on the application, the log analyzing system is monitoring, it has
to be set manually. Once the application is considered in an error state, the suffix array is constructed
with the error messages as the input and the analysis started.

4.2 Patterns for Auto-Analysis

The following describes the approaches taken for patterns that should be auto-analysed using a suffix
array. Meaning, at the start of the analysis by the log analyzing system, the suffix array will always be
queried for those. For the scope of this paper, it will always determine the most repeated log message and
the longest repeated message. The most repeated message is the string that occurred the most often inside
the message field, while the longest repeated message is defined as the longest repeated substring in the
same field. The results of these operations will then be returned as the pattern-based root-cause proposal.
Both the longest repeated message and the most frequent message are substrings of the string s within
the message field, commencing from the beginning of s. This means that, while they can be substrings
of the messages, they must start from the outset. For the four log messages shown in Figure 3, the most
repeated message is " FATAL ERROR at MS2". In this particular case, the longest repeated message is the
same as the most repeated message. However, in case at least two more log messages appear, starting
with " FATAL ERROR at MS2" but followed by some string β, the longest repeated message would be "

FATAL ERROR at MS2 + β", while the most repeated message would be " FATAL ERROR at MS2.

1: {"timestamp": "2025-01-21T13:55:42.699393Z",

"logLevel": "Error","serviceName": "MS1",

"message": "Error received, aborting",

"attributes":{"region": "eu-central-1"}}

2: {"timestamp": "2025-01-21T13:55:42.699394Z",

"logLevel": "Error","serviceName": "MS2",

"message": "Error caught: FATAL ERROR at MS2 aborting!",

"attributes":{"region": "eu-central-1"}}

3: {"timestamp": "2025-01-21T13:55:42.699398Z",

"logLevel": "Error","serviceName": "MS3",

"message": "FATAL ERROR at MS2",

"attributes":{"region": "eu-west-1"}}

4: {"timestamp": "2025-01-21T13:55:42.699400Z",

"logLevel": "Error","serviceName": "MS4",

"message": "FATAL ERROR at MS2",

"attributes":{"region": "us-east-1"}}

Figure 3: Logs Example Auto-Analysis

Note that, while various different, and sometimes simpler, data-structures for counting occurrences

137

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

exist [12],[13], the suffix array has been chosen for the following reasons. For patterns based on the values
of the message field, it is necessary to only consider these information and not the whole log message; this
can be ensured using a suffix array (see section 4.2.1) Additionally, the suffix array holds all log messages
of the log file, making it therefore possible to use these to develop further patterns that are specific to
the monitored application. Last, the suffix array can be further used during user-driven analysis, such as
free-text search, without having to introduce a new data structure.

4.2.1 Most Repeated Message

Assuming the presence of the LCP array and all characters set to lowercase, the most frequently repeated
message can be identified similarly to locating the most common sequence, as described in section 2.3.
However, a few changes have to be made to appeal to the structure of the log messages and to prevent the
outcome from being insignificant in terms of analysis. Otherwise, according to the procedure described
in 2.3, the result would be the character the most entries in the suffix array start with. Due to the
structure of the log messages introduced in section 3.2, all messages to be considered are the string values
of the message key. Finding the most repeated message can then be done by finding all occurrences of
message": in the suffix array and determining the prefix that occurred the most often. The flow of this
operation is visualized in Figure 4.

Suffix Array
suffixes starting with

message":
prefix occuring
the most often

Figure 4: Most Repeated Message Flow

A naive approach would be to count and compare the LCP values from the top (first occurrence of
message":) to bottom (last occurrence of message":). So for an LCP array LCP = [a1, a2, . . . , an]
the element ai with the highest count C(ai) = |{j > i | aj ≥ ai and ∀k ∈ [i, j], ak ≥ ai}| is the most
frequent value. To obtain the string value, a lookup is done in the suffix array at the index of ai and
the corresponding string value, starting from the beginning to the LCP [i] character, returned. However,
for the log messages shown in Figure 3 this approach would return message": " instead of the expected
message": "fatal error at ms2".

The issue is caused by the structure of the log message, the message field always starts with message":

" and thus resulting in an LCP value of 11, if the messages have only the message": " prefix in common.
Using the naive approach described above, once a LCP value of 11 is reached at index i, all following
values will only increase the counter for i, disregarding how often their LCP value appears. To prevent
this from happening, the suffixes starting with message": " are separated in contiguous sections. Due to
the nature of the LCP array [15, p. 9], a LCP value of 11, the length of their common prefix, states that
the string value in the message field starts with a different character. So, each part from a LCP value
of 11 to the next LCP value of 11 is considered a section sec. The counter C(sec) holds the number of
messages in one section and is increased for each consecutive entry with a LCP value greater 11. Upon
entering a new section, the C(sec) is set to zero. In case a LCP value smaller than 11 is encountered, the
operation stops, since the corresponding suffix is not starting with message": anymore [9, p. 152]. It
then defines the most repeated message as the substring of the entry in the suffix array at index i, where
i is the index of the smallest LCP value ̸= 11 for the section with the highest counter. Table 1 shows
a snippet of the suffix array expanded with the section counter for the example log messages shown in
Figure 3.

138

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

index i Suffix lcp sec C(sec)
5000 message": "error caught: [...] 11 0 0
5001 message": "error received, aborting",[...] 17 0 1
5002 message": "fatal error at ms2",[...] 11 1 0
5003 message": "fatal error at ms2",[...] 30 1 1
5004 message": "fatal error at ms2",[...] 30 1 2
5005 ms2",[...] 1 end -

Table 1: Snippet of example messages in suffix array with corresponding lcp and counter-value

4.2.2 Longest Repeated Message

To get a second suggestion and starting point for analysis conducted by the operator, the longest repeated
message is identified as well. In this work it refers to the longest repeating substring starting with mes

sage":. It can be obtained by tracking down the largest LCP value with that prefix [16, p. 876]. Figure 5
visualizes the process.

Suffix Array
suffixes starting with

message":
longest prefix occuring

at least twice

Figure 5: Longest Repeated Message Flow

Finding the longest repeated message is done by saving the max LCP value that came across during
the finding of the most repeated message. Since obtaining the most repeated message requires the
comparison of all numeric values of the LCP for all entries in the suffix array starting with message":

anyway, obtaining the most and longest repeated message can be done in one pass.

4.3 Queries for User-Driven Analysis

To verify the proposals from section 4.2 or to gain additional insight into the log messages, the log analyz-
ing system offers the operator the ability to query it as well. In contrast to queries and patterns described
in section 4.2, the results from those queries are not automatically pre-computed when creating the suffix
array. The functionality for user-driven analysis includes the identification of the most affected region,
the facilitation of free-text search, and the retrieval of all log messages for a designated microservice, or
a specified timestamp.

4.3.1 Most Affected Region

This operation determines the value that occurred the most frequently for the region key. For instance,
as illustrated in Figure 3, the most affected region is "eu - central -1", as it appears in two of the four
log messages. Finding the most affected region, can be done in a manner analog to the identification of
the most repeated message, as described in section 4.2. In contrast to the evaluation of the message part
of the log message, it is not necessary to determine the lowest LCP value of a section, since the entire
value of region is of interest. Therefore, the sectioning can be accomplished by identifying the initial
instance of region": and grouping all subsequent items into sections with the same LCP value [19, p.
1222] until an element that does not begin with region": is encountered. As the suffix array is sorted,
each section is contiguous [19, p. 1222]. Given these considerations and the fact that the structure of
the log messages ensures that the same region always has the same length, it can be concluded that
each section represents a different region. To identify the most affected region, the LCP value lcp of the
section with the highest number of items is selected, and the substring, starting at the beginning of the
first element to the lcpth character returned. For the example shown in Table 2 the selected section is
sec 0.

139

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

index i Suffix lcp sec C(sec)
5000 region": "eu-central-1" [...] 0 0 0
5001 region": "eu-central-1",[...] 23 0 1
5002 region": "eu-west-1",[...] 13 1 0
5003 region": "us-east-1",[...] 10 2 0
5004 rvice[...] 1 end -

Table 2: Snippet of example regions in suffix array with corresponding LCP and section

4.3.2 Free-Text Search

In the context of log analysis, this works defines free-text search as the ability to search for a string S
and retrieve the occurrence of it in the log file. In essence, this entails locating all instances of S in
the suffix array. As demonstrated by Manber and Myers [15], this task can be addressed by employing
two binary searches: one that finds the first and another that finds the final occurrence of S. The total
runtime complexity of this approach is that of the used binary search algorithm [15, p. 3]. For the log
analyzing system, the string value of each entry in the determined range is returned to the operator of
the log analyzing tool.

4.3.3 Microservice and Timestamp Search

The objective is to find all log messages and timestamps for a designated microservice. Given the
characteristics of the structure of the log messages, it is assured that the serviceName, as well as the
timestamp key, which holds the name and timestamp of the microservice, is succeeded by the message

field. This attribute enables the utilization of the same approach as for free-text search, but instead of
searching for any string, the input string S is set to either serviceName": " plus the name of the sought
microservice or to timestamp": " followed by the queried timestamp. Note that S was augmented with
the key of the value in question to ensure a correct result and prevent unwanted results.

In contrast to the microservice search, where it has to be ensured that the input is a valid name, it
is not necessary for the user to enter the whole timestamp. Instead, it is possible to look for multiple
timestamps by entering sub-values of the timestamp, as long as they are in accordance of the employed
internet timestamp format [20]. For example, looking up 2025-01-21 returns all log messages for the
25th of January 2025, since 2025-01-21 is a prefix of all timestamps for that day [20] and therefore being
the first value behind timestamp": ".

4.4 Dynamic Updating

In the event of an ongoing outage, it might be desirable to retrieve new log messages for analysis, thereby
updating the existing suffix array. Note that none of the patterns for analysis, except free-text search,
described in section 4.2 and 4.3 necessarily require the rest of the entry following the log message in
question. Utilizing this characteristic, the original suffix array SuAog can be updated by inserting all
suffixes of the new log file into SuAog, while maintaining the lexicographic order. Resulting in a new,
but formally incomplete, suffix arraySuAupdated. Consider Figure 6 for a visualization of the procedure.

Basic Log File
Suffix Array

SuAog

1. Create

New Log File
Extracted
Suffixes2. Extract

3. Append

Suffix Array
SuAupdated

4. Re-sort

Figure 6: Dynamic Updating Flow

140

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

This approach comes at the cost of losing the ability to search over the last log message in the old log

file into the new one. An operation that might be interesting to an operator, who wants to verify that
there was a consecutive appearance of certain log messages. All other introduced patterns work without
a disadvantage. To construct SuAupdated all suffixes from the considered log file are appended to the
end of SuAog, which is then re-sorted. To take advantage of the existing sorted suffix array TimSort is
employed. This sorting algorithm is particularly effective on partially ordered lists [21]. While the runtime
complexity of TimSort still remains at O(n log n) [22], it has been shown that for the implemented version
of TimSort in certain programming languages, the runtime complexity is actually O(n+ n log ρ), where
ρ is the number of runs [22]. The number of runs can be reduced, if the new suffixes are appended in
an (almost) sorted order [21]. Still, if in further usage of the log analyzing system, it is established that
updating is considered a heavy-used feature, a more complex suffix array implementation optimized for
dynamic extension [14] should be considered.

4.5 Implementation

All the concepts introduced in sections 4.2 and 4.3 were implemented in accordance with the described
algorithms and ideas. The programming language used for the implementation of the log analyzing
system is Java. This comes at the benefit that Java provides libraries for file-reading [23] as well as
an implementation of TimSort in the java.util.List library [24]. To construct the suffix array, the
construction algorithm proposed by Sedgewick and Wayne [25] is employed. Due to its simplicity, this
construction algorithm was chosen. In theory, it has a quadratic runtime which, in practice, is not
considered problematic as long as there are no long runs of identical characters [16, p.884]. The space
required for the utilized suffix array implementation is Θ(n) [16, p. 882]. As the LCP values are only
of interest for the auto-analysis and for obtaining the most affected region (both described in section 4)
the LCP values are only computed and stored for the spans in the suffix array needed to execute those
operations. Additionally, for printing the results of the queries (and therefore the value of the suffix array
at that index), a function called extractLogJson(String message) was added. The structure of the
log messages ensures that each log message starts with {"timestamp ":, based on this given structure
extractLogJson(String message) cuts the input message at the first occurrence of {"timestamp ":

to only return the log message in question. This adds an additional runtime of Θ(n), where n is the
length of message, but otherwise the returned results showed to be hard to read, especially for larger
suffix arrays.

5 Measurements

The following shows the results of the measurements conducted with the Java implementation of the
log analyzing system and compares it to time spent by the author of this paper gathering the same
information using pure user-driven analysis. For this scenario, pure user-driven analysis is defined as
using no additional tools except a text editor to open the log file and its search function. All the
measurements have been conducted on a 2021 MacBook Pro with 16 GB of memory and an Apple M1
Pro CPU. Measurements in terms of memory usage have been conducted by creating and examining a
memory snapshot via IntelliJ IDEA[26]. Time measurements were done by employing the Instant.now()
function of the java.time package [27].

5.1 Measurements Error-State Detection

Live-analysis took 247ms for detecting the error-state of the monitored environment, after considering
127,884 log messages. The combination of the EMA calculation and setting the interval for the amount
of EMAt values that have to be lower than the threshold to 10, determined the error-state correctly for
20 different log files of various sizes. Taking a look at the same log file and evaluating if the system is in
an error state manually, took significantly longer. That is 2 minutes or 120,000 microseconds.

141

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

5.2 Measurements Suffix Array Analysis

Table 3 shows the necessary space required for the suffix arrays of log files of various sizes.

Entries log file Log file space Suffix array entries Suffix array space LCP values space
400,067 78 MB 65,466,852 1.57 GB 32.02 MB
200,151 32.5 MB 32,512,925 78.31 MB 16.02 MB
100,027 16,04 MB 16,395,419 393.49 MB 8.02 MB

Table 3: Comparison disk-space based on different log files

The Tables 4, 5, and 6 provide comparisons in terms of time between pure user-driven analysis and
the same operations done by the log analyzing system. Note, that finding all log messages for a time
range is significantly faster when done using pure user-driven analysis. This is because the range was set
to the whole day, for which the log analyzing system has to consult each entry, compared to scrolling to
the end of the file and verifying that all entries have the same day. Additionally, due to the setup of the
testing environment, it can happen that the name of one specific task occurs more often in a log file than
in one that has more entries.

Operation Time Spent (ms) Frequency User Time (ms)
Building 20,345 N/A N/A
Auto-Analysis 401 N/A 720,000
Search String task 1 4,432 2,395 60,000
Microservice Search 99,487 100,118 120,000
Search Time Single 90 1 22,000
Search Time Range 385,257 400,067 35,000
Most Affected Region 157 N/A 480,000
Updating (130 entries) 9,524 N/A N/A

Table 4: Performance for 400,067 entries

Operation Time Spent (ms) Frequency User Time (ms)
Building 10,049 N/A N/A
Auto-Analysis 310 N/A 540,000
Search String task 1 4,884 4,942 60,000
Microservice Search 27,831 49,986 90,000
Search Time Single 86 1 19,000
Search Time Range 118,905 200,151 28,000
Most Affected Region 93 N/A 270,000
Updating (130 entries) 5,080 N/A N/A

Table 5: Performance for 200,151 entries

142

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Operation Time Spent (ms) Frequency User Time (ms)
Building 4,895 N/A N/A
Auto-Analysis 125 N/A 210,000
Search String task 1 170 142 25,000
Microservice Search 7,192 25,029 50,000
Search Time Single 42 1 5,000
Search Time Range 31,035 100,027 12,000
Most Affected Region 56 N/A 110,000
Updating (130 entries) 2,866 N/A N/A

Table 6: Performance for 100,027 entries

Further measurements showed that the difference between pure user-driven analysis and using the log
analyzing system remains high, even for smaller log files. Specifically,the measurements indicated that
the sweet-spot at which the log analyzing system becomes faster than pure user-driven analysis is for log
files consisting of over 2,000 log messages, as this seems to be the point where simply scrolling through
the file and looking for candidates for the operation becomes impracticable.

6 Conclusion

In this paper, a novel log analyzing system has been introduced that enhances analysis significantly.
Based on log messages, the system is able to detect if the monitored environment is in an error-state,
provides pattern-based proposals for an extracted root-cause of what could have brought the monitored
environment into an error-state, and offers querying capabilities over the underlying error log messages.
To do so, the incoming log messages are considered an online problem, allowing the use of the exponential
moving average algorithm for calculating the success-ratio of the monitored environment. For analysis,
the log messages under consideration are treated as strings and analyzed by employing a suffix array.
This suffix array is then used to provide automized patter-based root-cause proposals, by determining
the most repeated message and the longest repeated message. Additionally, its querying options offer
the possibility to get all log messages from a specific microservice, search for a given timestamp, receive
the geographic region with the most error messages, as well as using free-text search. The fact that
the proposed log analyzing system is able to provide auto-proposals to detect the root-cause and uses a
suffix array to do so, sets it apart from other log analyzing solutions using a big data approach [1], [4].
While there have already been solutions on how to extract operational profiles using a suffix array [5]
and how to cluster sequences via suffix arrays [19], this work proposed to split the values of the suffix
array into sequences to extract information based on the LCP values. For future usage, the log analyzing
system could be adjusted to work with an observability framework such as OpenTelemetry, a widely used
open-source observability framework that instruments, generates, collects, and exports telemetry data
including log messages [28].

Acknowledgement: This work was supervised by Professor Ph.D. Andreas Siebert, from Hochschule
Landshut. The author also thanks XIBIX Solutions GmbH that sponsored the work of this thesis by
allowing him to write and research it during working hours.

References

[1] A. Balliu, D. Olivetti, O. Babaoglu, M. Marzolla, and A. Ŝırbu, A big data analyzer for large trace
logs, Computing, vol. 98, no. 12, pp. 65–78, 2016.

[2] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, An evaluation study on log parsing and its use in
log mining, 46th annual IEEE/IFIP international conference on dependable systems and networks
(DSN), pp. 654–662, 2016.

143

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

[3] K. Kent and M. P. Souppaya, SP 800-92. Guide to Computer Security Log Management, National

Institute of Standards & Technology, Gaithersburg, MD, USA, 2006.

[4] M. Lemoudden and B. E. Ouahidi, Managing cloud-generated logs using big data technologies, 2015
International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 1–7,
2015.

[5] M. Nagappan, K. Wu, and M. A. Vouk, Efficiently Extracting Operational Profiles from Execu-
tion Logs Using Suffix Arrays, Proceedings of the 2009 20th International Symposium on Software
Reliability Engineering, pp. 41–50, 2009.

[6] M. Catillo, A. Pecchia, and U. Villano, AutoLog: Anomaly detection by deep autoencoding of system
logs, Expert Systems with Applications, 2022.

[7] W. Chang and N. Grady, NIST Big Data Interoperability Framework: Volume 1, Definitions, Special
Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, USA,
2019.

[8] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen, Online algorithms with
advice: A survey, ACM Computing Surveys (CSUR),vol. 50, no.2, pp. 1–34, 2017.

[9] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology, Cambridge University Press, Cambridge, USA, 1997.

[10] J. Loveless, S. Stoikov, and R. Waeber, Online algorithms in high-frequency trading, Commun.
ACM, vol. 56, no. 10, pp. 50-56, 2013.

[11] R. G. Brown, Exponential smoothing for predicting demand, Little, Massachusetts, USA, 1956.

[12] G. Cormode, S.Muthukrishnan An improved data stream summary: the count-min sketch and its
applications, Journal of Algorithms, vol. 55, no. 1, pp. 58-75

[13] A. Burstein, M. Toufik Counting occurrences of some subword patterns, Discrete Mathematics and
Theoretical Computer Science, vol. 6, no.1, pp. 1-12

[14] M. Salson and T. Lecroq and M. Léonard and L. Mouchard, Dynamic extended suffix arrays, Journal
of Discrete Algorithms, vol. 8, no. 2, pp. 241–257, 2007.

[15] U. Manber and G. Myers, Suffix Arrays: A New Method for On-Line String Searches, SIAM Journal
on Computing, vol. 22, no. 5, pp. 935–948, 1993.

[16] R. Sedgewick and K. Wayne, Algorithms Fourth Edition, Pearson Education Inc., Stanford, USA,
2011.

[17] S. J. Puglisi, W. F. Smyth, and A. H. Turpin, A taxonomy of suffix array construction algorithms,
acm Computing Surveys (CSUR), vol. 39, no. 2, pp.4-es, 2007.

[18] J. Olbrich, E. Ohlebusch, and T. Büchler, Generic Non-recursive Suffix Array Construction, ACM
Transactions on Algorithms, vol. 20, no. 2, pp. 1-42, 2024.

[19] K. Malde, E. Coward, and I. Jonassen, Fast sequence clustering using a suffix array algorithm,
Bioinformatics, vol. 19, no. 10, pp. 1221-1226,2003.

[20] C. Newman and G. Klyne, Date and Time on the Internet: Timestamps, RFC 3339, 2002.

[21] T. Peters, Timsort - A Python Sorting Algorithm, https://svn.python.org/projects/python/

trunk/Objects/listsort.txt, 2002 accessed: 2025-02-02.

[22] N. Auger, V. Jugé, C. Nicaud, and C.Pivoteau, On the Worst-Case Complexity of TimSort, 26th
Annual European Symposium on Algorithms (ESA 2018), vol. 112, pp. 4:1 – 4:13, 2018.

[23] Oracle Corporation, FileReader (Java SE 23 API), https://docs.oracle.com/en/java/javase/

23/docs/api/java.base/java/io/FileReader.html 2024, accessed: 2025-02-08.

[24] Oracle Corporation, List (Java SE 23 API), https://docs.oracle.com/en/java/javase/23/

docs/api/java.base/java/util/List.html, 2024, accessed: 2025-02-02.

[25] R. Sedgewick and K. Wayne, SuffixArray.java, https://algs4.cs.princeton.edu/63suffix/

SuffixArray.java.html, 2022, accessed: 2025-02-10.

[26] JetBrains, Create a Memory Snapshot, https://www.jetbrains.com/help/idea/

create-a-memory-snapshot.html, 2025, accessed: 2025-02-18.

[27] Oracle Corporation, Instant (Java SE 23 API), https://docs.oracle.com/en/java/javase/23/

docs/api/java.base/java/time/Instant.html, 2024, accessed: 2025-02-18.

144

https://svn.python.org/projects/python/trunk/Objects/listsort.txt
https://svn.python.org/projects/python/trunk/Objects/listsort.txt
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/io/FileReader.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/io/FileReader.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/util/List.html
https://algs4.cs.princeton.edu/63suffix/SuffixArray.java.html
https://algs4.cs.princeton.edu/63suffix/SuffixArray.java.html
https://www.jetbrains.com/help/idea/create-a-memory-snapshot.html
https://www.jetbrains.com/help/idea/create-a-memory-snapshot.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/time/Instant.html
https://docs.oracle.com/en/java/javase/23/docs/api/java.base/java/time/Instant.html

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

[28] OpenTelemetry, OpenTelemetry Documentation, https://opentelemetry.io/docs/, 2025, ac-

cessed: 2025-03-03.

Tobias Schneider
Hochschule Landshut
Faculty of Computer Science
Am Lurzenhof 1, 84036 Land-
shut
Germany
E-mail:
tobiasschneider1@acm.org

145

https://opentelemetry.io/docs/

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Tecky

Alexandru Emil Sofonea

Abstract

Tecky is an AI-powered automation application for macOS, designed to transform how users interact

with the operating system. By combining a modern Swift and SwiftUI-based interface with a local AI

server running LLMs optimized for Apple Silicon via MLX, Tecky can interpret natural language

commands and translate them into concrete actions on active applications. The agent leverages various

Foundation libraries to navigate and control the graphical interface, enabling access to UI elements,

simulating clicks and typing, and interacting intelligently with multiple applications simultaneously.

Through tool-calling for LLMs and structured JSON output, Tecky not only understands user intent but

can also execute tasks in a transparent and extensible manner. This paper documents the system’s

architecture, technical challenges, and potential, offering a clear perspective on how local LLMs can be

transformed into practical agents within the Apple ecosystem.

1 Introduction

Task automation on desktop operating systems is currently limited to traditional tools such as

AppleScript, Automator, or RPA-type applications. With the emergence of large language models

(LLMs), it has become possible to interpret tasks expressed in natural language and convert them into

contextual, concrete sequences of actions. This paper presents a system that integrates local custom

trained LLMs and Vision models with a native macOS application to perform complex tasks through

interaction with the graphical interface of other applications. This intelligent agent operates entirely

offline, effectively functioning as a virtual employee. It supports multiple models and runs on macOS

starting from version Big Sur, compatible with both Apple Silicon and Intel architectures (post-2017).

2 Architecture

The software architecture is built specifically for macOS and centers around the main component of the

application, the “Tecky Controller,” which integrates modules for application logic control (Controller),

the graphical interface (UI), and model management (ModelController). The application uses macOS

libraries such as Foundation, Cocoa, ApplicationServices, and CoreGraphics to access services like

accessibility permissions and control over keyboard and mouse events. Interaction with AI models (such

as DeepSeek Coder, LLaMA 3.2, Mistral) is handled through an LMS server hosted on a Python

Execution platform. This server receives commands from the application, processes them using the

LLMs, and returns the results for display in the UI. The architecture is modular, extensible, and designed

for integration with advanced AI services.

146

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

2.1 MacOS Controller

The macOS control component, internally referred to as the Tecky Controller, is responsible for

direct interaction with the operating system and the interfaces of open applications. It is composed of

several specialized services working together to allow the agent to perceive and manipulate elements in

the graphical interface in an automated way.

Fig. 1: Tecky Controller Architecture

The main service, AccessibilityService, part of the Cocoa framework, is used to access and traverse

the UI hierarchy of active applications. It identifies the target application, extracts all visible windows,

and recursively retrieves interactive elements (such as buttons, text fields, links) along with their textual

descriptions (title, role) and exact screen coordinates. To add further context to the AccessibilityService,

I implemented an additional Vision Layer that receives screenshots from the user’s screen and passes

them to a Vision Model Server. For each element, a unique identifier is generated, which can later be

referenced by the LLM. Elements are filtered based on predefined interaction roles (e.g., AXButton,

AXTextField, AXCheckBox), and the results are returned as separate descriptions and positions.

let workspace = NSWorkspace.shared

let runningApps = workspace.runningApplications

func traverseAccessibilityHierarchy(element: AXUIElement, appName: String)

{

 var value: CFTypeRef?

 let result = AXUIELementCopyAttributeValue(element,

kAXChildrenAttribute as CFString, &value)

 if result = .success, let childrenArray = value as? [AXUIELement] {

 for child in childrenArray {

 processElement (child, appName: appName)

 traverseAccessibilityHierarchy (element: child, appName:

appName)

147

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 }

 }

}

To execute actions on these elements, I created ClickerService and TyperService, both built on top

of the CoreGraphics library. ClickerService is responsible for moving the cursor to a specific position

on the screen and simulating a mouse click. It uses the CoreGraphics framework to generate synthetic

events such as mouseMoved, mouseDown, and mouseUp via CGEvent. Complementing this,

TyperService allows for simulating text input character by character. Each character is mapped to its

corresponding key code (CGKeyCode), and actions are executed using keyDown and keyUp events,

also through CoreGraphics. At this stage, the service supports basic alphanumeric characters, with the

potential for future expansion to include symbols and complex key combinations.

func moveMouse(x: CGFloat, y: CGFloat) {

 let targetPoint = CGPoint(x: x, y: y)

 let eventSource = CGEventSource(stateID: .hidSystemState)

 // Move the mouse to the specified coordinates

 let moveEvent = CGEvent(mouseEventSource: eventSource,

 mouseType: .mouseMoved,

 mouseCursorPosition: targetPoint,

 mouseButton: .left)

 moveEvent?.post(tap: .cghidEventTap)

}

func pressKey(_ keyCode: CGKeyCode, withModifiers modifiers: CGEventFlags =

[]) {

 let eventSource = CGEventSource(stateID: .hidSystemState)

 let keyDown = CGEvent (keyboardEventSource: eventSource,

 virtualKey: keyCode,

 keyDown: true)

 let keyUp = CGEvent(keyboardEventSource: eventSource,

 virtualKey: keyCode,

 keyDown: false)

 keyDown?.flags = modifiers

 keyUp?.flags = modifiers

 keyDown?.post(tap: .cghidEventTap)

 keyUp?.post(tap: .cghidEventTap)

}

Additionally, for system-level actions or applications requiring shell commands, I created

CommandService. This module spawns a Bash process, configures a standard output pipe, and executes

received commands with optional arguments, returning the result as plain text. This mechanism is useful,

for instance, for quickly launching applications, listing files, or performing other command-line

accessible operations.

@discardableResult

func runCommand(_ command: String, arguments: [String] = []) → String {

 let process = Process

 let pipe = Pipe

 process.launchPath = "/bin/bash"

 process.arguments = ["-c", command + " " + arguments.

joined(separator: " ")]

 process.standardOutput = pipe

148

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 process.standardError = pipe

 let fileHandle = pipe.fileHandleForReading

 process.launch()

 let data = fileHandle.readDataToEndOfFile()

 process.waitUntilExit()

 return String(data: data, encoding: .utf8) ?? "Error executing

command"

}

Together, these services define a complete control layer that enables the agent to observe,

interpret, and interact efficiently with the macOS interface, regardless of the application in use.

The modular architecture and use of standard Apple frameworks ensure compatibility and

stability starting from macOS Big Sur, and allow for easy extension of capabilities in the future.

2.2 LLM Server

The LLM server is the core component responsible for processing user requests and running the

LLM models in the Tecky application. Instead of relying on external services or hosting models on

remote servers, I chose to implement a local server as a service using the MLX infrastructure, which

enables optimized model execution on macOS. The server runs on Uvicorn, a high-performance ASGI

server.

We started with the otriscon/llm-structured-output repository, which enables LLM responses to be

mapped to a predefined JSON structure for server configuration. First, I installed and configured

Uvicorn, an ideal ASGI server for microservices applications, allowing fast integration with LLMs. It

runs on port 8080 and accepts POST requests with prompts, which are processed by the trained models

and return structured JSON results.

uvicorn.run(

 "examples.server:app”,

 host=“0.0.0.0",

 port=args.port

)

To create a server that is easily distributable and macOS-compatible, I used PyInstaller to transform

the Python script into a native executable. This approach removes the dependency on an external Python

environment, making it possible to integrate the server directly into the native macOS application

without requiring an external development setup. PyInstaller packages the entire codebase and

dependencies into a single executable file that is easy to distribute and can run on any macOS system—

even those without Python installed.

pyinstaller --onefile

 --add-data "src/examples: examples"

 --add-data "src/llm_structured_output:llm_structured_output"

 --collect-all fastapi

 --collect-all mLx_lm

 --collect-all mlx

 --collect-all tokenizers

 --collect-all sentencepiece

 --collect-all pydantic

 --collect-all uvicorn src/run_server.py

149

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The LLM server runs models compatible with or converted for MLX (such as those from the mlx-

community on Hugging Face), and is configured to accept prompt-completion requests and use the tool-

calling functionality from LLM Structured Output (allowing the LLM to invoke functions). These

requests are processed by the server, and the results are returned to the macOS application as structured

JSON objects. These are then translated into a sequence of actions for the user interface.

By using Uvicorn and PyInstaller, I successfully created a fast, self-contained, and user-friendly

server for running LLMs locally on macOS—without relying on external services or complex

configurations. This server fully localizes request processing, ensuring the application can function

entirely offline, without compromising performance or user experience.

2.3 Vision Model Server

In addition to the LLM server, Tecky integrates a Vision Model Server designed to handle visual

understanding of the user interface, especially in areas where accessibility APIs fall short—such as

custom-rendered views using Canvas, Metal, or non-AX UI elements. This server runs locally using

FastAPI and Uvicorn, and serves a YOLO model provided by the Ultralytics library for object detection.

@app.post("/detect")

async def detect(req: ImageRequest):

 try:

 image_data = base64.b64decode(req.image)

 image = Image.open(io.BytesIO(image_data)).convert("RGB")

 except Exception as e:

 return {"error": f"Invalid image: {str(e)}"}

 results = model(image, verbose=False)[0]

 output = []

 for box in results.boxes.data.tolist():

 x1, y1, x2, y2, score, cls = box

 label = results.names[int(cls)]

 output.append({

 "label": label,

 "score": float(score),

 "bbox": {

 "x": float(x1),

 "y": float(y1),

 "width": float(x2 - x1),

 "height": float(y2 - y1)

 }

 })

 return output

To facilitate seamless integration on macOS, the server is packaged into a self-contained executable

using PyInstaller, removing the need for an external Python runtime. Once running, the server listens

for POST requests containing image data (screenshots), performs object detection on the input using the

YOLO model, and returns bounding boxes and class labels in a structured JSON format. This enables

Tecky to interpret screen content visually and interact with UI components that cannot be

programmatically accessed through macOS’s accessibility APIs.

On the Swift side, a specialized component called ScreenCaptureService is responsible for

generating the input for the Vision Model Server. This service captures individual screenshots of each

open application window, not just the full screen, by using macOS APIs such as

CGWindowListCreateImage to obtain high-fidelity images of visible windows. Each screenshot is

tagged with the corresponding window’s metadata (e.g., application name, window ID, bounds) and sent

to the Vision Server for analysis.

150

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Func captureScreen(forApp appName: String) -> [(image: CGImage, x: CGFloat,

y: CGFloat)] {

 let options: CGWindowListOption = [.optionOnScreenOnly,

.excludeDesktopElements]

 guard let windowListInfo = CGWindowListCopyWindowInfo(options,

kCGNullWindowID) as NSArray? Else { return [] }

 var captured: [(CGImage, CGFloat, CGFloat)] = []

 for windowInfo in windowListInfo {

 guard let dict = windowInfo as? NSDictionary,

 let windowOwnerName = dict[kCGWindowOwnerName as String] as?

String,

 windowOwnerName.lowercased().contains(appName.lowercased()),

 let boundsDict = dict[kCGWindowBounds as String] as?

NSDictionary,

 let x = boundsDict[“X”] as? CGFloat,

 let y = boundsDict[“Y”] as? CGFloat,

 let width = boundsDict[“Width”] as? CGFloat,

 let height = boundsDict[“Height”] as? CGFloat,

 let windowID = dict[kCGWindowNumber as String] as? CGWindowID

else {

 continue

 }

 let bounds = CGRect(x: x, y: y, width: width, height: height)

 if let image = CGWindowListCreateImage(bounds,

.optionIncludingWindow, windowID, [.bestResolution]) {

 captured.append((image, x, y))

 }

 }

 return captured

}

This coordinated setup, ScreenCaptureService on the client side and the YOLO-based Vision

Server on the local backend, creates a powerful visual perception layer within Tecky. It allows the agent

to understand and act on any UI layout, even those dynamically rendered or inaccessible via accessibility

APIs. The system remains fully offline, fast, and privacy-preserving, further enhancing Tecky’s ability

to operate as an intelligent, local automation assistant for macOS.

3 UI & Controller

The Tecky application adopts a minimalist and modern design, based on SwiftUI, with a focus on

providing a clean and intuitive visual experience. At the core of the design is the use of a WebView,

which integrates HTML, CSS, and JavaScript to render the graphical interface. The WebView provides

the flexibility needed for dynamic interactions, allowing users to select AI models, view responses, and

interact with the Tecky agent in an efficient and elegant manner.

A key aspect of the visual design is the use of a blur effect applied to the application’s background,

achieved through the NSVisualEffectView component. This component creates a transparent,

aesthetically pleasing background that aligns perfectly with the macOS design language, delivering a

soft blur effect that integrates naturally with the user interface without visually overloading the

151

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 application. This visual depth enhances the overall sophistication without distracting from functional UI

elements.

Fig. 2: Tecky User Interface

In terms of application logic, Tecky.swift is the central component that connects all of the app’s

services and modules. It acts as an orchestrator between the UI, the LLM server, and the internal services

(such as ClickerService, TyperService, and CommandService, which are part of AccessibilityService).

Tecky.swift is responsible for wiring together these components and managing the data flow between

them.

let process = Process()

process. executableURL = URL(fileURLWithPath: binaryPath)

process.arguments = arguments

process. environment = [

 "PATH": Bundle.main.bundlePath + "/Contents/MacOS",

 "HOME": NSHomeDirectory()

]

DispatchQueue.global(qos: .userInitiated).async {

 do {

 try process.run(

 } catch {

 print("Failed to run Server: \(error. localizedDescription)")

 }

}

When the user selects a model from the UI, Tecky.swift handles downloading the selected model

via the Tecky API, ensuring it is correctly installed in the Application Support directory. Once available,

152

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 Tecky.swift launches the local LLM server on localhost:8080, using the previously described server

configuration.

func sendRequest(jsonBody: [String: Any], completion: @escaping (Data?,

URLResponse?, Error?) → Void)

 // Create request

 var request = URLRequest(url: url)

 request.httpMethod = "POST"

 request. setValue("application/json", forHTTPHeaderField: "Content-

Type")

 // Convert dictionary to JSON data

 do {

 let jsonData = try JSONSerialization.data(withJSON0bject:

jsonBody, options: [])

 request.httpBody = jsonData

 } catch {

 print("Error serializing JSON: \(error)")

 return

 }

 // Perform request

 URLSession.shared.dataTask(with: request, completionHandler:

completion).resume()

}

Further, Tecky.swift mediates between the WebView (which receives user input) and the LLM

server. When a user submits a request, Tecky.swift constructs a structured prompt in JSON format and

sends it to the LLM server. The server processes the prompt and returns a structured JSON response,

which Tecky.swift then converts into concrete actions—sending them to the relevant internal services

like ClickerService (for simulating clicks), TyperService (for typing text), or CommandService (for

executing shell commands).

This approach enables seamless and efficient communication across all application components,

making Tecky.swift the central hub of application logic. It also allows users to interact directly with the

AI model, with responses quickly and accurately translated into actions that directly impact the operating

system.

4 Custom Model Fine-tuning

To ensure both the language understanding and visual perception components of Tecky are finely

tuned for the macOS environment, we developed custom training pipelines for both the LLM and Vision

models.

For the language model, I started with a quantized version of LLaMA 3.2 8B Instruct, selected for

its balance between performance and efficiency on Apple Silicon. The model was fine-tuned specifically

for LLM function-based answering, aligned with the structured JSON output format required by the

Tecky Controller.

The training data was constructed through a custom crawler algorithm that parsed various publicly

available websites documenting macOS workflows, command-line utilities, application usage, and

productivity tasks. This raw data was passed through a preprocessing script which restructured the

content into dialog-style datasets—formatted as user prompts and assistant JSON responses that

mirrored the expected outputs of the Tecky Controller. Essentially, the model was taught to translate

natural language instructions into machine-executable structured responses.

The dataset generation and fine-tuning loop were executed fully locally, using the same LLM server

Tecky uses in production, allowing us to test and iterate rapidly. This ensured that the LLM not only

153

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 understands context-specific requests but also outputs directly executable actions in a format compatible

with the tool-calling infrastructure.

For the computer vision component, I developed a dataset and training loop tailored to UI detection

on macOS. Using an automated screenshotting script, I collected thousands of application window

images from real macOS sessions. A portion of these screenshots were manually annotated using

LabelImg, focusing on common UI elements such as buttons, inputs, toggles, and toolbars.

With this initial model trained, I constructed a self-bootstrapping pipeline: the trained YOLO model

was used to detect elements in new screenshots, generating pseudo-labels that were then validated and

refined through heuristic filters. These automatically labeled images were added to the dataset, and the

model was retrained on this expanded corpus. This process was repeated iteratively, creating a

continuous learning cycle that scaled the dataset and improved model accuracy with minimal manual

intervention.

The result is a custom YOLO model, highly optimized for recognizing visual UI patterns on

macOS, even in apps with non-standard or custom-rendered interfaces. Combined with the LLM, this

enables Tecky to perceive, understand, and act on both semantic and visual cues with high precision.

5 Limitations and Conclusion

Despite the custom training pipelines, data scarcity remains a core limitation. While the fine-tuned

LLM and Vision models perform well on common macOS workflows and standard UI layouts, the

diversity and complexity of real-world applications require significantly more data to achieve robust

generalization.

For the LLM, the rephrased dataset derived from public documentation provides a strong baseline,

but it still lacks full coverage of edge cases, nuanced user intentions, and rare workflow patterns. This

means that in certain contexts, the model might generate structurally valid but semantically incorrect

actions, or misinterpret ambiguous prompts, especially for lesser-known apps or non-standard user

phrasing.

On the Vision side, the challenge is even more pronounced. Every new application introduced into

Tecky’s automation scope may feature a unique layout, custom-drawn components, or dynamic UI

behavior that the model has not previously seen. As a result, achieving reliable automation requires a

large number of labeled images per application, which introduces a significant bottleneck. Although the

automated labeling pipeline helps scale data collection, manual verification is still essential to maintain

accuracy and avoid compounding errors.

Together, these challenges mean that predictive inaccuracies may occur—such as clicking the

wrong element, mistyping inputs, or failing to detect critical UI components. Overcoming this will

require continuous dataset expansion, community-driven contribution pipelines, and potentially

incorporating few-shot or on-device fine-tuning strategies to personalize behavior for each user and

application.

Acknowledgement: This work was supervised by Professor Delilah Florea, from Samuel von

Brukenthal National College Sibiu, Romania.

References

[1] LLM Structured Output: JSON Schema, Function Calling, Tools,
https://github.com/otriscon/llm-structured-output/

[2] Turn images into AI to get useful insights with no code, https://www.ultralytics.com/

[3] A fast, open source web browser engine. https://webkit.org/

[4] FastAPI framework, https://fastapi.tiangolo.com/

154

https://github.com/otriscon/llm-structured-output/
https://www.ultralytics.com/
https://webkit.org/
https://fastapi.tiangolo.com/

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

[5] Application Services, https://developer.apple.com/documentation/applicationservices

[6] Core Graphics, https://developer.apple.com/documentation/coregraphics

[7] PyInstaller Manual, https://pyinstaller.org/en/stable/

[8] Uvicorn, https://www.uvicorn.org/

[9] MLX Community, https://huggingface.co/mlx-community

Alexandru Emil SOFONEA

Samuel von Brukenthal National College Sibiu

ROMANIA

E-mail: alex@alexsofonea.com

155

https://developer.apple.com/documentation/applicationservices
https://developer.apple.com/documentation/coregraphics
https://pyinstaller.org/en/stable/
https://www.uvicorn.org/
https://huggingface.co/mlx-community

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Web-based System for Dynamic Text Rendering and

Interactive Content Management in Full-screen

Environments in the Music Industry

Kristian P. Spasov, Martin S. Dzhurov, Serkan H. Sadulov

Abstract

This scientific report explores the design, development, and implementation of a web-based

system created for dynamic text rendering tailored specifically for full-screen usage in musical

performances. Addressing existing limitations of conventional methods, such as printed song

lyrics and manually managed teleprompters, the proposed solution offers real -time interactive

content management, automatic resizing of text to optimally fit various display devices, and

intuitive control via specialized hardware – foot switches and numeric keypad interactions. The

developed system leverages modern web technologies (HTML5, CSS3, JavaScript, PHP, MySQL,

AJAX, JSON, Bootstrap, and jQuery) to ensure efficient, seamless, and intuitive user experience.

This paper provides a comprehensive analysis of existing solutions, clearly defines the objectives

and tasks of the new system, and presents the architectural decisions, functional design, data

organization strategies, and detailed descriptions of the implemented functionalities. The report

concludes by evaluating the effectiveness of the proposed solution and identifying directions for

future enhancements.

1 Introduction to the problem

In recent years, the rapid advancement of technology has profoundly reshaped numerous

fields, drastically improving efficiency, accuracy, and user experience. However, within the realm

of live musical performances, many musicians continue to rely heavily on printed materials for

lyrics and chords, creating practical inconveniences during live performances. This reliance on

traditional, paper-based methodologies complicates spontaneous changes in the performance

repertoire, as musicians must manually search through extensive printed materials, causing

unintended pauses, disrupting audience engagement, and detracting from the overall performance.

Furthermore, conventional solutions like karaoke software [1-5] or stage prompters [7] either fail

to offer flexibility for real-time changes or rely heavily on third parties, increasing the risk of

human error and further complicating live performances.

Recognizing these limitations, there is a clear and immediate need for a dynamic solution,

capable of managing musical content interactively and intuitively . Such a system would eliminate

156

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 the reliance on cumbersome paper-based documentation by digitizing song lyrics and chords,

ensuring swift retrieval, dynamic adjustment, and immediate accessibility directly on screen.

Additionally, by implementing automatic text resizing optimized for full-screen viewing, the

proposed solution addresses critical readability issues associated with traditional methods,

ensuring maximum visibility and ease of use in dynamic stage environments. This web-based

approach not only streamlines content management but also significantly enhances performers'

autonomy, facilitating seamless transitions, spontaneous repertoire changes, and ultimately

improving both audience and performer satisfaction.

2 Current solutions

The analysis of current solutions highlights various existing technologies designed to

facilitate dynamic text display for live musical performances. Existing solutions range from

dedicated teleprompter software specifically tailored for musicians, such as SingerPro [1],

Baraoke [2], and LivePrompter [3], to broader multimedia presentation systems like OpenLP and

EasyWorship [4, 5], as well as versatile browser-based applications like EasyPrompter [6] and

robust hardware-integrated solutions, such as the BLACK BOX Prompter [7]. While these

solutions offer various levels of usability, flexibility, and functionality, each presents limitations,

particularly concerning automated text resizing, platform independence, and ease of real -time

interaction.

2.1 SingerPro Music Teleprompter

SingerPro Music Teleprompter is a software application designed to display song lyrics,

chords, and musical notes directly onto screens, making them easily accessible for live

performers. It effectively replaces traditional paper-based methods, helping musicians maintain

eye contact with their audience. Key features include adjustable font size and colour, scrolling

speed, and the ability to import song texts and chords. The portability and compatibility with

mobile devices make it highly versatile for live performances. However, the application lacks

advanced flexibility for dynamic changes during performances, relying heavily on manual

controls which can lead to errors if managed improperly [1].

• Pros: User-friendly interface, customizable visual elements, portable design, mobile

compatibility, and audio playback functionality.

• Cons: Dependent on manual interactions for dynamic adjustments during live performances;

potential musician’s distraction due to continuous manual operation.

2.2 Baraoke

Baraoke combines lyric prompting and audio playback, specifically tailored for karaoke and

live bar performances. This software supports various audio and video file formats and offers

advanced features, such as synchronized lyric scrolling, playlist management, tempo, pitch

adjustments, and audio effects processing. The ability to control the software using MIDI

(Musical Instrument Digital Interface) controllers, touchscreens, or foot switches adds significant

versatility. Its main strength lies in the combination of audio effects processing and lyric

synchronization, making it highly suitable for dynamic live scenarios [2].

• Pros: Versatile interface compatible with multiple input devices, audio effects processing,

real-time playlist management, and continuous software updates.

157

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 • Cons: Limited support for automated text resizing; primarily focused on bar and karaoke

scenarios, potentially less suitable for complex stage performances.

2.3 LivePrompter

LivePrompter is specifically crafted to aid musicians during live performances, rehearsals,

and studio recordings by displaying synchronized song lyrics, chords, and notes. This solution

enables automatic text scrolling aligned with musical performances, enhancing ease of use. Its

compatibility with chordpro files ensures quick integration with commonly used music

documentation formats [3].

• Pros: Automated text scrolling synchronized with music playback, lightweight and portable

design suitable for stage use, support for various file formats including chordpro.

• Cons: Not web-based; limited cross-platform compatibility (primarily Windows-based),

which restricts its accessibility and flexibility in diverse performance environments.

2.4 OpenLP and EasyWorship

OpenLP and EasyWorship are multimedia presentation management solutions popular among

religious services, seminars, and multimedia presentations. Both solutions offer functionalities to

manage songs, verses, and multimedia content. They provide a robust interface to integrate

various multimedia elements, supporting external input from remote controls. Their strength lies

in broad multimedia capabilities and easy integration with media libraries [4, 5].

• Pros: Excellent multimedia management capabilities, multi-screen setup, and user-friendly

interfaces suitable for varied presentation contexts.

• Cons: Lack specialized tools for automatic text scaling, limited direct control for live

dynamic adjustments specific to musical performances.

2.5 EasyPrompter

EasyPrompter provides a web-based teleprompting solution suitable for various scenarios,

including broadcasting, speeches, and film production. It is highly accessible through browsers

and supports dual-screen setups, script management, and smooth scrolling adjustments. The web-

based nature ensures wide compatibility across multiple platforms and easy access without

installation requirements [6].

• Pros: Accessible through browsers, easy script management, adjustable scrolling features,

dual-screen support.

• Cons: Lacks specific features tailored to musicians, such as chord integration or dynamic,

real-time text resizing based on content.

2.6 BLACK BOX Prompter

The BLACK BOX Prompter is a specialized teleprompter system designed to enhance live

musical performances by providing musicians with clear, real-time access to lyrics, chords, and

sheet music. Featuring a 24-inch shatter-proof display, the device is built for durability and stage

use. It supports various file formats, including text-based and PDF files, allowing for versatile

content integration. The prompter includes a three-pedal foot controller for hands-free operation,

enabling musicians to navigate through their content seamlessly during performances. Additional

158

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 features include Wi-Fi connectivity, an internet browser for quick access to online resources, and

smart scrolling with adjustable speeds. While the BLACK BOX Prompter offers a comprehensive

solution for on-stage prompting, its hardware-centric design may limit portability compared to

software-based alternatives, and its premium build quality reflects a higher price point [7].

• Pros: Durable 24-inch shatter-proof display, supports multiple file formats, hands-free

operation with foot switches, Wi-Fi connectivity, smart scrolling, and internet browsing

capabilities.

• Cons: Hardware-centric design may limit portability; higher price point compared to

software-based solutions.

Table 1: Comparative Table

Functionality SingerPro Baraoke LivePrompter OpenLP &

EasyWorship

EasyPrompter BLACK

BOX

Prompter

Web-based

Automated

text resizing

Manual

scrolling

Automatic

synchronized

scrolling

Chord and

lyrics

integration

Multi-screen

support

Specialized

hardware

integration

Real-time

playlist

editing

Durable

hardware

design

Internet

browsing

capabilities

The table of comparison between the different software solutions is presented on Table 1. It

can be noted that BlACK BOX Prompter has the most features. The one that conforms the least to

the criteria are EasyPrompter and OpenLP & EasyWorship.

159

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 3 The proposed solution

3.1 Software system architecture

The proposed software solution features a sophisticated and carefully structured architecture,

embracing modern web technologies and adhering to the Model-View-Controller (MVC) design

pattern, ensuring clear separation and optimal maintainability. The application was developed

using HTML5, CSS3, and JavaScript libraries, such as jQuery and AJAX on the frontend, while

the backend is implemented with PHP for server-side logic and MySQL for robust relational data

management. The real-time communication layer between the server side and the client sides is

implemented via WebSockets, leveraging PHP Ratchet, a powerful PHP-based WebSocket server

framework. Ratchet efficiently manages persistent socket connections, significantly

outperforming older methods, such as HTTP Long Polling by reducing latency, minimizing data

overhead, and eliminating unnecessary repeated server polling. Complementing Ratchet on the

client side is the native JavaScript WebSocket API, enabling efficient, low-latency, bidirectional

communication channels that maintain continuous connectivity, crucial for live interactive

sessions [8].

Moreover, the client-side implementation distinguishes between two specialized interfaces,

each optimized for distinct user roles. The first interface is specifically designed for musicians

performing on stage, emphasizing simplicity, clarity, and instant readability, ensuring performers

can quickly interpret and follow lyrics, chords, and performance cues. This interface dynamically

renders and resizes text, automatically optimizing visibility for full-screen displays (Fig.1). The

second interface serves the backstage crew and technical support, providing extensive control and

monitoring functionalities. It enables real-time tracking of the current playlist status, seamless

updates to the playlist during performances, and a secure messaging capability to communicate

directly with musicians on stage through the WebSocket connection. This two-tier client-side

implementation significantly enhances the overall effectiveness of live musical performances,

facilitates swift adaptation to unexpected situations, and ensures smooth coordination among all

team members involved.

3.2 Automatic text-resizing algorithm and full screen visualization

The automatic text-resizing algorithm implemented in the proposed system is specifically

designed to optimize the visibility and readability of song lyrics, chords, and related textual

information dynamically on varying screen sizes and resolutions. The algorithm operates client -

side, using JavaScript and jQuery to dynamically adjust the font size and layout based on the

current viewport dimensions. Initially, the maximum font size (maxSize) is retrieved from server-

side PHP settings stored in a MySQL database and loaded via an AJAX request. The client

application then attempts to render the song content within the available display space (view-port

boundaries). The core logic employs a multi-step approach involving two primary functions:

checkMaxRows() and checkMaxColsAndRows(). The checkMaxRows() function calculates the

maximum number of text rows that can fit within a column without overflowing vertically by

incrementally appending rows until the container's height limit ($(".content").outerHeight()) is

exceeded. The iterative procedure of this function ensures efficient measurement and precise

fitting.

160

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 The core implementation of the row measurement function is shown in Listing 1.

Listing 1: Source code of checkMaxRows function

function checkMaxRows(startIndex, endIndex, textArray, column){
 var rows = 0;
 var mainBody = "<div class='curCol"+column+"' style='display: grid; grid-auto-flow: row; height:

100%;'>";
 var maxHeight = $(".content").outerHeight();
 for(var i=startIndex; i<endIndex; i++){
 mainBody += textArray[i];
 $(".content").html(mainBody + "</div>");
 if($(".curCol"+column).outerHeight() > maxHeight)
 break;
 rows++;
 }
 return rows;
};

Following this, the checkMaxColsAndRows() function repeatedly calls checkMaxRows() to

determine how many columns of text the display can accommodate. It generates an array

representing the number of rows per column, ensuring optimal use of horizontal space . The

implementation is shown in Listing 2.

Listing 2: Source code of checkMaxColsAndRows function

function checkMaxColsAndRows(textArray){
 var col = [];
 var repeat = 0;
 var countCols = 0;
 while(repeat < textArray.length){
 col[countCols] = checkMaxRows(repeat, textArray.length, textArray, 0);
 repeat += col[countCols];
 countCols++;
 }
 return col;
};

Once the grid structure is determined, the resizeText function integrates these calculations,

dynamically resizing the font until the entire content perfectly fits the available screen width and

height without overflow. The resizing loop progressively reduces the font size until horizontal

scrolling is no longer necessary. The implementation of the logic is shown in Listing 3.

Listing 3: Source code of displayText & resizeText functions

function displayText(gridStructure, textArray){
 var textBody = "";
 var count = 0;
 for(var i=0; i < gridStructure.length; i++){
 textBody += "<div class='curCol"+i+"' style='display: grid; grid-auto-flow: row; height: fit-

content;'>";
 for(var j=0; j<gridStructure[i]; j++){
 textBody += textArray[count++];
 }
 textBody += "</div>"
 }
 return textBody;
};

161

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

function resizeText(textArray){
 var display = checkMaxColsAndRows(textArray);
 var textToDisplay = displayText(display, textArray);
 $(".content").html(textToDisplay);
 while($(".content").outerWidth() < $(".content").prop('scrollWidth')){
 currentSongSize--;
 $(".content").css("font-size", currentSongSize);
 display = checkMaxColsAndRows(textArray);
 textToDisplay = displayText(display, textArray);
 $(".content").html(textToDisplay);
 }
};

If initially rendered content exceeds the width of a full HD (High-definition)

(1920px×1080px) screen, the algorithm reduces the currentSongSize() incrementally until the

textual content fits without horizontal overflow. Each iteration precisely recalculates the grid

dimensions, achieving optimal balance between readability and available screen space.

Additionally, the event handler attached to the window resize event ensures that dynamic

adjustments occur seamlessly, maintaining optimal visualization during real-time viewport

changes. A practical rendered example is shown in Fig.1.

Fig.1: Stage view of loaded and resized lyrics

3.3 Hardware system solution

The hardware architecture accompanying the proposed text-rendering system encompasses

carefully selected and specialized components tailored explicitly for live stage performances.

Central to this setup is the primary visualization device, typically implemented as a large Full-HD

or 4K display strategically positioned on stage and connected to a dedicated stage computer or

laptop running the web-based application. The stage computer (in the current solution it is All-In-

One PC) is primarily controlled by specialized foot switches (Fig.2) operated by the lead

musician, enabling hands-free navigation through song sections, playlist progression, and real-

time song selection without interrupting their musical performance. Additionally, the lead

musician can use a separate numeric keypad (numpad) connected via USB, which provides

extended functionality beyond basic navigation, such as the ability to rapidly add songs directly

162

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 into the active playlist or send predefined text messages instantly to other musicians or the

backstage crew. To ensure consistent visibility for all performers, the stage computer's screen

content is duplicated across multiple monitors connected via HDMI (High-Definition Multimedia

Interface) splitters, allowing each stage performer clear access to lyrics and chords in real time.

Fig.2: Hardware foot switch prototype from old USB keyboard

The backstage crew interacts with the system through a separate web interface (Fig.3),

accessible via the web-based application on a device independent of the main stage computer.

Unlike the stage equipment, the backstage control interface is completely detached from the stage

hardware and is accessible via any browser-enabled device connected to the same network (Fig.4).

Leveraging the established WebSocket-based communication infrastructure managed through the

PHP Ratchet WebSocket server, the backstage panel offers functionality to monitor real -time

updates on playlist progression, to send custom messages directly to musicians during

performances, and to perform remote adjustments to the playlist without interrupting the

performance flow. This architecture, with clearly defined and separated user interfaces, facilitates

coordinated, real-time communication and adjustments between performers and backstage crew,

substantially enhancing both the flexibility and effectiveness of live musical presentations.

Fig.3: Backstage view of loaded songs in a current playlist

163

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Fig.4: Schematic representation of the theoretical framework

4 Practical application

4.1 Observed behaviour and changes during the iterative development process

During experimental evaluations, the automatic text-resizing algorithm exhibited specific

limitations when handling exceptionally lengthy song lyrics or chord notations. In scenarios

involving songs with extensive text content or numerous verses, the algorithm often needs

multiple recalculations to achieve an optimal font size, thus potentially causing visible delays

during the resizing process. Although the implemented algorithm effectively adapts to common

content lengths, it faces difficulties with exceptionally long song texts, where iterative

recalculations become computationally intensive and inefficient. For instance, testing revealed

that when loading content exceeding typical display dimensions (such as lyrics surpassing

standard viewport heights by multiple screen lengths), the resizing logic might require more

iterations, resulting in noticeable latency and reduced responsiveness. Future improvements

should include predictive optimization techniques, such as initial estimation based on historical

data or adaptive caching mechanisms to significantly reduce computational overhead and ensure

consistently fast rendering performance.

Additionally, the current automatic resizing logic encounters limitations when dealing with

constrained display environments characterized by limited columns and rows. Specifically, in

performances using smaller screens or monitors with lower resolutions, the algorithm must

substantially reduce font size to accommodate the entire content within the restricted space. This

excessive downsizing negatively impacts readability, diminishing the legibility and usability of

the displayed text for performers. This limitation poses a significant practical issue, particularly

for stage setups with restricted space or distant viewing positions. In future improvements, the

algorithm should incorporate advanced content segmentation strategies, such as line splitting,

column-balancing heuristics, or scrolling capabilities, ensuring readability without sacrificing

visibility or compromising user experience. Implementing predictive text-layout strategies or

adaptive pagination could also effectively manage such spatial constraints, offering enhanced

readability even in limited-display scenarios.

164

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 4.2 Practical implementation

The proposed solution is deployed (Fig.4), and it is working successfully in real industrial

environment in the span of 2 years, as of the date of this paper. The system, both hardware and

software are deployed in “Church of God of Prophecy” – Ruse, Bulgaria, and it is used during

worships each Sunday. The practical deployment of the system is shown on Fig.5.

Fig.5: Practical deployment of the argued solution

5 Conclusion

In summary, the proposed automatic text-resizing and full screen visualization algorithm,

effectively solves the common issue of dynamically adapting textual information for varying

resolutions, offering a robust, automated solution specifically suited to live-performance

scenarios.

In conclusion, this paper presents an advanced web-based solution designed specifically to

address the limitations of existing text visualization methods in live musical performance settings.

By integrating latest web technologies (HTML5, CSS3, JavaScript, PHP, MySQL, Ratchet

WebSockets), specialized hardware interactions (foot switches and numeric keypads), and a

sophisticated automatic text-resizing algorithm, the proposed system significantly enhances live

performance efficiency and reliability. Although existing solutions partially address content

management and real-time interactivity, the current work successfully combines automated

165

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

 resizing, dedicated hardware control, and dual-interface designs for musicians and backstage

crew, addressing previously unresolved challenges.

Nevertheless, future developments should focus on optimizing performance for extensive

textual content, refining computational efficiency, and addressing spatial constraints on limited -

resolution displays, thereby ensuring improved scalability and enhanced usability. The proposed

solution establishes a strong foundation for future research and practical innovations in real-time

dynamic text rendering for interactive web environments, promising continued improvements and

wider applicability across various performance contexts.

Acknowledgement: This work was supervised by chief assistant Vasil Kozov, Ph.D. from

University of Ruse “Angel Kanchev” – Natural Sciences and Education Faculty – Informatics and

Information Technologies Department.

References

[1] SingerPro Music Teleprompter, Official Website. Available online:

https://play.google.com/store/apps/details?id=com.easyapps.singerpro (accessed 9 March 2025).

[2] Baraoke, Official Website. Available online: https://www.baraoke.co.uk (accessed 9 March 2025).

[3] LivePrompter, Official Website. Available online: https://www.liveprompter.com (accessed 9 March

2025).

[4] OpenLP, Official Website. Available online: https://openlp.org (accessed 9 March 2025).

[5] EasyWorship, Official Website. Available online: https://easyworship.com (accessed 9 March 2025).

[6] EasyPrompter, Official Website. Available online: https://www.easyprompter.com (accessed 9 March

2025).

[7] BLACK BOX Prompter, Official Website. Available online: https://blackboxprompter.com (accessed 9

March 2025).

[8] PHP WebSockets With Ratchet, Medium. Available online: https://medium.com/@winni4eva/php-

websockets-with-ratchet-5e76bacd7548 (accessed 9 March 2025).

Kristian P. Spasov

University of Rousse “Angel Kanchev”

Faculty of Natural Sciences

8 Studentska str., POB 7017, Ruse

BULGARIA

E-mail: kspasov@uni-ruse.com

Martin S. Dzhurov

University of Rousse “Angel Kanchev”

Faculty of Natural Sciences

8 Studentska str., POB 7017, Ruse

BULGARIA

E-mail: mdzhurov@uni-ruse.com

Serkan H. Sadulov

University of Rousse “Angel Kanchev”

Faculty of Natural Sciences

8 Studentska str., POB 7017, Ruse

BULGARIA

E-mail: ssadulov@uni-ruse.com

166

Organ 3D Model Reconstruction using Point Clouds

Matei-Cristian Steavu

Abstract

There are multiple techniques when trying to reconstruct the 3D model of an organ, as well as

multiple formats in which to process all this data. Each of these methods is unique and has its own

strength and weaknesses. This paper’s scope is to describe the best format to use in the context of 3D

bioprinting, comparing each method’s strengths as well as to describe the use of a technique generally

found in geographic information systems, namely Delaunay triangulation.

1 Introduction

The motivation for this paper stems from an interest in 3D bioprinting and 3D printing in

general. When searching for a bioprinting technique that has enough resolution for genuine artificial

organs there are no standard methods to save data for G-Code generation or post processing methods

for volumetric 3D printing.

The standard file format for organs, dcm, is used to share data, but a method to share 3D models

of organs is still unheard of. Thus, a standard method for generating a 3D model from dcm files is

necessary.

Generally, when trying to reconstruct organs one either generates the point clouds of an object,

uses the marching cubes algorithm or surface triangulation with key points. Each of these has its

own advantages and disadvantages those will be presented below.

The method used in this paper is 3D object generation through point clouds, using 16-bit Canny

edge detection with Delaunay triangulation. Usually, the most used method is image processing is

Canny edge detection, the standard being 8-bit Canny (used for jpg and png files, not for dcm files),

while Delaunay triangulation is a process generally used in geographic information systems (GIS

[5]). The original contribution of this paper is the use of a method from GIS generation in organ 3D

model reconstruction. Due to recent advances made by NVIDIA, a suitable upgrade to our method

would be using their MESHTRON [2] model.

2 General Approaches

While organ data is shared in the format of dcm files (independent from what hardware they

were obtained from), with most databases having dcm files there are a lot of approaches when trying

to reconstruct the 3D model of the organ. Some of these include generation of point clouds, mesh

cube generation and triangulation of important points.

167

Fig. 1. Processing methods [1]

Yet, what we specifically look for when discussing bioprinting is which method offers the best

resolution, the best scalability for future advancements in 3D bioprinting and uses the least amount

of computing power (table 1, [1]).

 Point Clouds Marching Cubes Surface Triangulation

Resolution Limited by dcm

resolution

Limited by iteration

steps

Limited by point

extraction

Scalability Occupies more

memory

Necessitates know

normals for planes

Needs more

computing power

Computing power Depends on memory

usage.

Multiple iterations Needs more

computing power

Table 1.

Since point clouds seem to be limited by the memory usage and existing methods to construct

objects from point clouds; it seems to be the most fitting approach, even though surface

triangulation is a close contender.

Now, what we wanted to test is whether using point clouds in addition to an algorithm that turns

these point clouds into the 3D printable object would be any better than existing methods. Here,

there are also multiple options such as ConvONet, Points2Surf [7] and MESHTRON[2]. Models

such as Points2Surf were immediately ruled out as they did not have the performance needed ,

producing holes in meshes. Thus, Delaunay algorithm was chosen to connect the points from a point

cloud in the hopes of creating a high-resolution 3D model of the file.

Since starting to work on this project, MESHTRON came out, a model that seems to outperform

all variants in this task, creating high resolution with better topology, better than triangulation, but

more work is needed to asses its usefulness in this usecase.

168

Fig. 2. Meshtron [2]

3 Implementationz

When it comes to how we implemented everything, we used the python programming language

as it has the necessary libraries to work with all these files. Combined with its simplicity it seemed

to be the best option. In addition to python we use the “pydicom” library for working with dcm

files, opencv to work with jpeg’s and png’s, a dataset with normal brain MRI slices [7], Canny edge

detection (16 bit canny with dcm files and opencv canny with jpeg’s and png’s) and “scipy” for

Delaunay triangulation.

Now, the code starts with extraction of the data from either jpegs or dcm files. This is done with

the following piece of code. This code extract all the data from dcm files or other files and puts all

the pixel data in an 3D array with each pixel. The pixel data from jpg files is turned into grayscale

as the canny algorithm can only process grayscale images.

def extract_data_files_file_type(self, folder_directory, file_type):
 if os.path.exists(folder_directory:
 i=0
 for name in os.listdir(folder_directory):
 if pathlib.Path(folder_directory+name).suffix == file_type
 #self.show_image(folder_directory+name)
 if file_type == ".dcm":
 dicom = pydicom.dcmread(folder_directory + name)
 self.Data_set_file[i] = dicom.pixel_array
 self.Data_set_file[i] = canny_edge_detection(self.Data_set_file[i])
 #self.plotter(self.Data_set_file[i])
 else:
 image = openCV.imread(folder_directory + name)
 edge = np.uint8(self.rgb2grayscale(image))
 self.Data_set_file[i] = openCV.Canny(edge, 100, 200)
 #self.plotter(self.Data_set_file[i])

169

 i=i+1
 self.Data_numbers = i
 else:
 print("File directory does not exist.")

After this step, the files are processed by Canny edge detection algorithms [3][4], 16-bit canny

for dcm and opencv canny for the other file types. This process turns the dcm files from the one on

the left into the one on the right. This approach has its drawbacks, as finding the right thresholds

for the detection to look properly can be rather difficult. Another important fact is that usually this

algorithm should be used with segmentation tools (this is a future update that will be added).

Fig. 3. Canny edge detection on dcm file

The canny edge detection algorithm is the usual one, except for the fact that calculations are

done on eiter 64 bits (for sobel gradients) and the output is on 16 bits, not 8. Lower, you will see

the whole algorithm for the 16-bit canny edge detection. It is not as efficient as the one made by

opencv to process images, as it does not leverage parallel computing and C++. Similar work is

presented in the following github repository [8].

def gaussian_blur(image, kernel_size=5, sigma=1.4):
 blurred = cv2.GaussianBlur(image, (kernel_size, kernel_size), sigma)
 return blurred
def sobel_gradients(image):
 grad_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)
 grad_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)
 magnitude = np.hypot(grad_x, grad_y)
 angle = np.arctan2(grad_y, grad_x)
 return magnitude, angle
def non_maximum_suppression(magnitude, angle):
 M, N = magnitude.shape
 Z = np.zeros((M, N), dtype=np.float64)
 angle_deg = angle * 180.0 / np.pi
 angle_deg[angle_deg < 0] += 180
 for i in range(1, M - 1):
 for j in range(1, N - 1):
 try:
 q = 0.0
 r = 0.0
 if (0 <= angle_deg[i, j] < 22.5) or (157.5 <= angle_deg[i, j] <= 180):
 q = magnitude[i, j + 1]
 r = magnitude[i, j - 1]

170

 elif 22.5 <= angle_deg[i, j] < 67.5:
 q = magnitude[i + 1, j - 1]
 r = magnitude[i - 1, j + 1]
 elif 67.5 <= angle_deg[i, j] < 112.5:
 q = magnitude[i + 1, j]
 r = magnitude[i - 1, j]
 elif 112.5 <= angle_deg[i, j] < 157.5:
 q = magnitude[i - 1, j - 1]
 r = magnitude[i + 1, j + 1]
 if (magnitude[i, j] >= q) and (magnitude[i, j] >= r):
 Z[i, j] = magnitude[i, j]
 else:
 Z[i, j] = 0
 except IndexError:
 pass
 return Z
def double_thresholding(img, lowThresholdRatio=0.05, highThresholdRatio=0.15):
 highThreshold = img.max() * highThresholdRatio
 lowThreshold = highThreshold * lowThresholdRatio
 M, N = img.shape
 res = np.zeros((M, N), dtype=np.float64)
 strong_value = img.max()
 weak_value = strong_value / 3.0
 strong_i, strong_j = np.where(img >= highThreshold)
 weak_i, weak_j = np.where((img < highThreshold) & (img >= lowThreshold))
 res[strong_i, strong_j] = strong_value
 res[weak_i, weak_j] = weak_value
 return res, weak_value, strong_value
def hysteresis(img, weak, strong):
 M, N = img.shape
 for i in range(1, M - 1):
 for j in range(1, N - 1):
 if img[i, j] == weak:
 if ((img[i + 1, j - 1] == strong) or (img[i + 1, j] == strong) or (img[i + 1, j + 1] == strong)
 or (img[i, j - 1] == strong) or (img[i, j + 1] == strong)
 or (img[i - 1, j - 1] == strong) or (img[i - 1, j] == strong) or (img[i - 1, j + 1] == strong)):
 img[i, j] = strong
 else:
 img[i, j] = 0
 return img

Now that we have the processed images, we need to generate the point cloud of those objects.

We do this by keeping the 3D coordinates of all the strong pixels after the canny edge detection.

def edge_to_3D(self, scale_x, scale_y, dim_z, distance):
 step_z = dim_z/self.Data_numbers
 z_curent = -dim_z/2
 for k in range(self.Data_numbers):
 for x in range(self.Data_set_file[k].shape[0]):
 for y in range(self.Data_set_file[k].shape[1]):
 coord = [scale_x*(512-x),scale_y*(512-y),z_ curent]
 if self.Data_set_file[k][x][y] == 1 and self.point_condition(self.Point_Array, coord,distance):
 self.Point_Array.append(coord)
 z_ curent = z_ curent + step_z

171

After this process, we now have some of the strong pixels (selected at a certain distance from

each other) stored into the Point array that, thus we have created a point cloud that looks similar to

the one below.

Fig. 4. Point Cloud

At this point the inside points are filtered out and the convex hull is computed. After using

Delaunay triangulation, the final result will look like the picture below. Unfortunately, it is not

detailed enough as the current code is not efficient, but it did not produce any holes in the mesh

while reconstructing the object which is an advantage compared to other methods.

Fig. 5. Final result

4 Future advancements

Since the current method lacks any segmentation algorithm, a segmentation algorithm would

really have a great impact, allowing the method to reconstruct each organ specifically. More

specifically, a segmentation algorithm like AlexNET would be ideal.

172

The second improvement would be to write the code in such a way that it uses all CPU cores

and ideally, even see whether some code can run efficiently on the GPU, but more work is needed

here.

Additionaly, implementing an algorithm like MESHTRON for object generation would improve

the output reasult greatly as the algorithm also improves geometry, while preserving important

details.

Since there are no algorithms that can quite reach the barrie sub-micrometer accuracy without

suffering from hefty computing time increases, an algorithm based on Brownian motion or fractals

would be great for generating the vasculatory system in case of potential resolution increases for

3D bioprinters.

5 Conclusions

While all current methods have the ability to produce impressive results, when it comes to 3D

bioprinting, ideally the process would have a tool for organ segmentation (like AlexNET), then use

point clouds for organ reconstruction and MESHTRON for object generation and have methods that

generate the vasculatory system from scratch.

Of couse that there might be better alternatives for organ segmentation (depending on what we

segment), but the rest seem to be the best tools for this specific domain. Since these methods are

still not perfect, more work is still needed.

Acknowledgement: This work was supervised by Assoc. Prof. Dr. Eng. Angel Cataron from

University of Transylvania, Brasov.

References

[1] Processing methods, https://vciba.springeropen.com/articles/10.1186/s42492-023-00142-7

[2] MESHTRON, https://arxiv.org/abs/2412.09548

[3] Canny edge detection, https://medium.com/data-science/canny-edge-detection-step-by-step-in-python-

computer-vision-b49c3a2d8123

[4] Canny edge detection, https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html

[5] GIS, https://www.tandfonline.com/doi/abs/10.1080/02693799308901979

[6] Points2Surf, https://arxiv.org/abs/2007.10453

[7] The used dataset, https://www.kaggle.com/datasets/trainingdatapro/dicom-brain-dataset

[8] Similar canny edge detection implementation, https://github.com/sbme-tutorials/sbe404-cvtoolbox-

ver2-group_25/blob/master/mainwindow.py

Matei-Cristian Steavu

Transilvania University of Brasov

B-dul Eroilor nr. 29

ROMANIA

E-mail: mateisteavu@yahoo.com

173

https://vciba.springeropen.com/articles/10.1186/s42492-023-00142-7
https://arxiv.org/abs/2412.09548
https://medium.com/data-science/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://medium.com/data-science/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123
https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
https://www.tandfonline.com/doi/abs/10.1080/02693799308901979
https://arxiv.org/abs/2007.10453
https://www.kaggle.com/datasets/trainingdatapro/dicom-brain-dataset
https://github.com/sbme-tutorials/sbe404-cvtoolbox-ver2-group_25/blob/master/mainwindow.py
https://github.com/sbme-tutorials/sbe404-cvtoolbox-ver2-group_25/blob/master/mainwindow.py

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Road Condition Classification and Predictive Maintenance
Using (OBD-II) Data

Tanya Teresse, Jarin Justin Victoria

Abstract
The On-Board Diagnostics II (OBD-II) system changed the course of car maintenance by offering

low-level access to critical vehicle data in real time. This paper discusses the modern-day applications
of OBD-II in predictive maintenance, along with examples of incorporating machine learning algo-
rithms for improved diagnosis and anomaly detection. We analyze road conditions using a labeled
dataset containing OBD-II sensor readings from three categories: Normal, Free, and Busy roads.
Feature selection was carried out using mutual information scores to identify the most informative
attributes out of over 120 available. We then predict maintenance needs as well as identify anomalies
using models such as Random Forests, Support Vector Machines, and Neural Networks. Anomalies
are defined as unusual sensor patterns potentially indicating mechanical or electrical faults, and are
detected using One-Class SVM. Random Forests provide high accuracy and robustness for both classi-
fication and regression tasks and have desirable traits for practical applications. Our study highlights
the potential of OBD-II data and machine learning in transforming how we optimise the reliability
and safety of vehicles.

1 Introduction to OBD and Predictive Maintenance
The revolution in automotive diagnostics has been the core of the change in automotive management
that will steer better, smarter maintenance strategies. In its early introduction in the 1980s, On-Board
Diagnostics (OBD) was developed for monitoring engine health and failure detection. The OBD sys-
tems of early times were relatively limited, often to company-proprietary technologies unique to each
manufacturer. However, everything changed in 1996 with the introduction of OBD-II when the whole
standard used in cars in most parts of the world was implemented. Along with the broadening of the
diagnostic possibilities for OBD-II, there was also an added provision of a universal interface that permits
the real-time monitoring of any set of many car subsystems and easy fault finding on mainstream vehicle
makes and models [1,2].

Predictive maintenance is a proactive and data-driven concept that utilizes the rich stream of sensor
data provided by OBD-II systems. Rather than relying on reactive or scheduled maintenance cycles,
predictive maintenance uses models trained on historical and real-time OBD-II data to identify early
signs of issues. These patterns and anomalies—such as irregular sensor readings or unexpected combina-
tions of parame- ters—can suggest mechanical or electrical problems before they become critical. This
methodology cuts down on safety risks and downtime, improves performance, and extends the lifespan
of key components. It represents a forward step in achieving greater reliability and operational efficiency
in the automotive industry [7].

1.1 On-Board Diagnostics II (OBD-II)
The OBD-II systems act as a link between the Engine Control Unit (ECU) and the automotive diagnostic
equipment. OBD-II offers real-time as well as stored information and is globally recognized under legal

174

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

guidelines. A 16-pin Data Link Connector (DLC) enables real-time or stored diagnostic data retrieval
[7][2]. This global interface allows accurate monitoring of a vehicle’s subsystems including its engine,
transmission, exhaust systems, and ensuring compliance with eco-friendly measures [6][4]. The stan-
dardized structure also enables consistent data access across over 120 sensor attributes, which can be
selectively used for various diagnostic and predictive tasks.

1.1.1 Key Components of OBD-II

The OBD-II system serves as the vehicle’s self-diagnostic and reporting system. It collects informa-
tion from a network of sensors and electronic control units (ECUs) to continuously monitor numerous
subsystems in the vehicle. The main components of the OBD-II system are as follows:

• Electronic Control Unit (ECU): The ECU acts as the brain of the OBD-II system, processing
inputs from numerous sensors to control engine and other vehicle system functions. It also captures
Diagnostic Trouble Codes (DTCs) if it detects a fault or malfunction [5][7].

• Sensors: Sensors are like the vehicle’s ’nervous system,’ and are dispersed throughout the vehicle
to measure parameters like oxygen levels in the exhaust, engine temperature, and fuel economy.
The sensors then transmit the information to the ECU to analyze and control specified engine
and vehicle systems [5][2]. In this study, we focused on a subset of these sensor readings, selected
through statistical feature analysis for their relevance to predictive maintenance and road condition
detection.

• Diagnostic Trouble Codes (DTCs): When the ECU detects a fault, it assigns a DTC - a pre-defined
code corresponding to the detected fault. These codes can be read with an OBD-II scanner, and
can assist mechanics and vehicle owners with diagnosing problems and addressing any issues before
they become larger problems [5][6].

• Standardized Interface: OBD-II uses a communication protocol and a universal connector to fa-
cilitate the reading of data from any OBD-II scanner or diagnostic instrument. Regardless of the
variety of vehicle manufacturers, this standardized interface can assist with accurate diagnostic and
repair [4][7].

1.1.2 Types of Data

OBD-II supplies a range of parameters necessary for predictive maintenance [6] such as:

• Real-Time Data: Continuously generating data from live sensors to provide real-time information
at the vehicle’s operating speed e.g. engine RPM, coolant temperature, fuel system health, and
vehicular speed [7].

• Freeze Frame Data: Freeze frame data is a snapshot of important engine characteristics (e.g. throttle
position, intake manifold pressure) recorded when a Diagnostic Trouble Code (DTC) is generated
to provide context at the time the problem was reported [5]. These snapshots can also aid in
identifying anomalies in the context of specific events.

• Diagnostic Trouble Codes (DTCs) are a standard set of instructions used to identify specific defects
in car systems (e. g. engine, body, chassis, network defects) [6].

• Emission Readiness Data Status of on-board diagnostic monitors that assess the efficiency of emis-
sion control systems [7].

• Permanent DTCs Regulatory (or other long term diagnostic fault codes) kept in ECU memory until
resolved [7].

• Event Data Recorder (EDR) Information Commonly used in accident investigation, EDR data is
recorded in incidents like sudden deceleration and or airbag deployment [4].

175

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

2 Literature Review

2.1 Evolution of OBD-II and Predictive Maintenance

On-Board Diagnostics II (OBD-II), standardised in 1996, was originally designed to monitor emissions
from vehicles and ensure adherence to environmental regulations. However, the role of OBD-II has grown
and today it is also an essential diagnostic instrument gathering information from all subsystems of the
vehicle such as the engine, transmission and exhaust [3].
OBD-II data is fully utilized by predictive maintenance, which adopts a proactive approach to automotive
care, to foresee issues before they result in failure. This technique has evolved into a successful and
economical means of reducing unplanned malfunctions, enhancing safety, and optimizing maintenance
plans by using machine learning to examine data patterns [7]. In the context of this study, predictive
maintenance is specifically applied to detect early signs of failure based on sensor readings that vary
under different road conditions, such as stop-and-go traffic or continuous highway driving.

2.2 Applications of OBD-II Data

Diagnostic Trouble Codes (DTCs), time-series data, and real-time data streams are only a few of the
diagnostic data types that can be produced by OBD-II and play an important role in the diagnosis
process. Additional parameters such as engine RPM, throttle position, and air flow rate are particularly
valuable when evaluating performance patterns over different road scenarios. The following are examples
of the type of data that Long Term Predictive Analysis (LTA) and Anomaly Detection (AD) can benefit
from using. Nagy and Lakatos (2023) stressed the need for integrating OBD-II with state-of-the-art
analytical toolkits for real time diagnostics. Fransson (2015) analyzed associative classification of DTC
to identify patterns [6][8].

2.3 Machine Learning for Predictive Maintenance

There is a great deal of usage in OBD-II data with the help of machine learning. Examples of typical
models are:

• Random forests and decision trees are popular mainly because of their interpretability and ability
to hold high dimensions of data.

• SVMs (Support vector machines) also work well for binary categories like fault vs no fault.

• Neural networks Time series data analysis is a very good case for using deep learning algorithms
such as LSTMs which enable very precise fail prediction.

Generally speaking, in terms of accuracy and robustness comparative studies (e. g. Maheshwari et al.,
2024) indicate that ensemble models like Random Forest perform better than simpler models [9]. In this
study, a comparison of multiple models—including Random Forest, SVM, MLP, Gradient Boosting, and
Gaussian Process Regressors—was performed to evaluate their effectiveness in classifying road conditions
and predicting maintenance needs.

2.4 Anomaly Detection in Automotive Systems

OBD-II data anomalies frequently indicate mechanical or electrical problems. Outliers have been found
using clustering and One-Class SVM methods, which allow insights into unusual operating conditions.
Moreover, studies have shown that anomalies are more frequent in stressful or congestion-mode appli-
cations, such as chaotic (busy) road traffic [8]. In our implementation, anomalies are defined as sensor
behaviors that deviate significantly from the learned normal operating patterns. These anomalies are de-
tected without explicit failure labels, using One-Class SVM, making this approach suitable for real-world
scenarios where annotated fault data is often unavailable.

176

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

3 Experiment

This section examines the predictive maintenance and sensor functionality tests for vehicle telemetry
systems through OBD-II data. The goal of this analysis is to leverage predictive OBD-II analytics
in vehicle maintenance optimization. The project seeks to automate the analysis of road conditions
and irregularities and the prediction of maintenance work through the application of machine learning
technologies. The approach focuses on reducing the unavailability of the vehicle for use, improving
safety, and increasing efficiency by deriving value from real-time diagnostic data. We also examine how
road conditions—categorized as Normal, Free, and Busy—may influence the frequency of anomalies and
prediction accuracy, linking driving environments to component stress.

3.1 Dataset

The dataset comprises 2,693,087 rows and 13 columns of road condition, taken from the OBD-II sensors
[11] and categorizes the road condition into Normal Road (1,975,080 samples), Free Road (238,032 sam-
ples), and Busy Road (479,975 samples). The raw data was extracted from multiple CSV files named
according to these road condition labels and processed to create a unified structure. Each file was assigned
standardized column names, and missing values were removed to ensure consistency and reliability. The
date of data collection was extracted from the filenames and appended to the records. All datasets were
merged into a single dataframe, sorted by date, and labeled with a ’Road Condition’ column.
It is important to note that these labels were not instrument-measured but were assigned based on the
filenames provided in the original dataset. As such, they reflect traffic context as observed by the data
collector.
Feature selection was carried out using the mutual info classif method from scikit-learn, which quantifies
the mutual information between each feature and the target variable, resulting in the selection of: Ab-
solute Throttle Position, Engine Coolant Temperature, Intake Air Temperature, Engine RPM, Air Flow
Rate, Vehicle Speed Sensor, Intake Manifold Pressure, and Accelerator Pedal Position E. This technique
is suitable for selecting the most informative features in a high-dimensional sensor dataset.

3.2 Methodology

The experimental setup was implemented in the Kaggle notebook environment, configured with no ac-
celerator, no persistence, and using the latest Python runtime. The programming language used was
Python, and the primary libraries employed in this study were Pandas and NumPy for data manipulation,
and scikit-learn for machine learning model development, evaluation, and feature selection. Additional
libraries such as Matplotlib and Seaborn may have been used for data visualization where necessary.
These results support potential use in near real-time scenarios, though further timing evaluations are
needed for deployment.

The data preparation process involved reading the OBD-II CSV files from a predefined input directory.
The files were categorized based on keywords in their filenames: ’Normal’, ’Frei’, and ’Stau’, corresponding
to Normal, Free, and Busy road conditions, respectively. Each dataset was assigned uniform column
names and a date field, and a categorical label for road condition was appended. After removing rows
with missing values, the datasets were combined into a single dataframe, and sorted by the date column
to prepare for time-series aware modeling where necessary.

The models used in the study included Random Forest Classifier and Regressor, Support Vector
Classifier and Regressor, Gradient Boosting Regressor, Multi-layer Perceptron Regressor, and Gaussian
Process Regressor. Default hyperparameters were used unless otherwise noted. For MLP, the architec-
ture included two hidden layers with 100 and 50 neurons respectively. SVM models used RBF kernels,
while Gaussian Process models were applied with an RBF kernel for consistency. The Random Forest
models were selected due to their strong performance in non-linear environments and their robustness to
overfitting, achieved through ensemble learning. The Support Vector Machines were included to compare
performance with margin-based classifiers, though they showed limitations in scalability and sensitivity
to parameter scaling. The Gradient Boosting and MLP models were employed to explore the effectiveness
of boosting and neural networks in regression-based anomaly detection. The Gaussian Process Regressor

177

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

was used to investigate uncertainty estimation, but it exhibited difficulties in modeling due to data scale
and non-Gaussian noise.

Evaluation metrics were chosen based on the specific objectives of the tasks. For classification models,
precision, recall, F1 score, and ROC AUC were used. Precision and recall were critical to balance false
positives and false negatives, especially in detecting anomalies or abnormal road conditions. The F1
score provided a harmonic mean of precision and recall, making it suitable for imbalanced datasets. The
ROC AUC score measured the model’s discriminative capability across all classification thresholds. For
regression models, root mean squared error (RMSE) and mean absolute error (MAE) were used. RMSE
penalized larger errors, making it appropriate for sensitive predictive maintenance forecasts, while MAE
gave an average error magnitude that is easy to interpret.

3.3 Classification Models

3.3.1 Road Condition Classification Metrics

Table 1: Performance Metrics of the Random Forest Classifier

Model Precision (%) Recall (%) F1 Score (%) ROC AUC (%)

Random Forest Classifier (RFC) 99.25 99.26 99.25 99.98

The RFC showed strong performance in classifying road conditions, achieving a high F1 Score of
99.25%, which reflects a good balance between precision and recall. It achieved a ROC AUC value of
99.98%, indicating excellent class separation. These results suggest that the model could be considered
reliable for practical use. The ensemble method was used to optimize the model, that is makes use of
multiple decision trees to make the model more accurate and robust.

3.3.2 Predictive Maintenance Regression Metrics

Table 2: Error Metrics of the Random Forest Regressor

Model RMSE MAE

Random Forest Regressor (RFR) 0.15 0.04

The low root mean square error (RMSE) of 0.15 and mean absolute error (MAE) of 0.04 indicate that
the RFR model performs well in predicting maintenance requirements. These low error rates are due to
the model’s strong ability to capture non linear relationships present in OBD-II data such as changes in
engine parameters or sensor readings over time.

3.4 Anomaly Detection Models

3.4.1 Anomaly Detection Metrics

Table 3: Comparison of Classification Model Performance

Model Precision (%) Recall (%) F1 Score (%) ROC AUC (%)

Support Vector Classifier (SVC) 99.08 99.20 99.02 92.78

Random Forest Classifier (RFC) 99.41 99.46 99.40 97.26

Gaussian Process Regressor (GPR) 98.85 99.02 98.59 89.21

178

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

RFC showed the highest precision (99.41%) and recall (99.46%), indicating strong performance in

identifying anomalies while minimizing false negatives. SVC was less effective, likely due to its sensitivity
to parameter scaling and difficulty handling large-scale datasets. GPR’s lower metrics may be attributed
to its scalability limitations and reliance on Gaussian assumptions, which may not align well with the
complexity of OBD-II sensor patterns.

3.4.2 Anomaly Regression Metrics

Table 4: Comparison of Regression Model Error Metrics

Model RMSE MAE

Random Forest Regressor (RFR) 0.07 0.01

Gradient Boosting Regressor (GBR) 0.08 0.01

Multi-Layer Perceptron Regressor (MLP) 0.08 0.01

Support Vector Regressor (SVR) 0.10 0.06

Gaussian Process Regressor (GPR) 0.10 0.01

The road condition labels used in classification were derived from the original filenames (e.g., ’Normal’,
’Frei’, ’Stau’) provided in the dataset, and were used as categorical targets for supervised learning. RFR
outperformed the other models narrowly, with a root mean square error (RMSE) of 0.07 and a mean
absolute error (MAE) of 0.01. GBR and MLP displayed competitive results but underperformed slightly,
likely due to their sensitivity to hyperparameter tuning. SVR exhibited the highest error rates (RMSE:
0.10, MAE: 0.06), likely due to its limitations in modeling non-linear data effectively without extensive
parameter adjustment. GPR, while consistent in performance, struggled with the complexity of the data,
resulting in RMSE values similar to SVR.

4 Result

Among the various experiments, we find that most of the used machine learning models can extract useful
features from OBD-II data. The Random Forest approaches appeared to perform the best in gaining
different insights from OBD-II data including classification of road conditions, anomaly detection and
predictive maintenance of automobiles.

This classification performance is notably strong for a random forest classifier. The RFC Matrices
are near perfect for road condition classification. They demonstrate the reliability and accuracy of the
proposed model that distinguishes between different road conditions. These results support the potential
use of random forest classifiers in near real-time scenarios, where classification accuracy is critical for
optimizing vehicle behavior and safety.

A good result in terms of predictive maintenance is that the Random Forest Regressor (RFR) exhibits
the highest degree of accuracy in terms of error distribution, and consistently shows a significantly lower
margin of error when compared to other model formulations. This is of great benefit in terms of the
ability to anticipate failures and to act in a timely manner, which enhances reliability and operation
efficiency of vehicles.

In the case of anomaly detection, the RFC model showed a superior performance compared to other
approaches with regard to the precision and recall values. It proved to be reliable in terms of finding
anomalies in large-scale complex datasets. In contrast, models such as Support Vector Classifier (SVC)
and Gaussian Process Regressor (GPR) were less effective in scaling to large datasets or capturing complex
sensor interactions.

In the anomaly regression problem again the RFR appeared to be the most reliable model, giving the
lowest error rates. Gradient boosting regressor (GBR) and multilayer perceptron (MLP) also carried a

179

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

competitive performance, but not by much. These results show that Random Forest Regressor is able to
take the details of the relationship in the data and make accurate predictions.

The performance of both Random Forest models (RFC and RFR) in terms of robustness, training
stability, and low sensitivity to parameter tuning suggests their value as reliable tools for the development
of predictive maintenance and anomaly detection from OBD-II data for automotive industries.

Finally, anomaly frequency was found to be higher under Busy Road conditions, further supporting
the link between driving environment and maintenance needs.

5 Conclusion

Random Forest models (RFC and RFR) consistently outperformed others on both classification and re-
gression tasks, demonstrating robustness and high accuracy. Anomaly detection showed that a major part
of the anomalies were caused by the high traffic conditions (Busy Road), with this result we recommend
proactive maintenance. Deploying these models in a real-time or near real-time system could increase ve-
hicle reliability, reduce unexpected breakdowns, and optimize maintenance cycles in both cost and safety
aspects. Future research can explore deep learning (such as LSTMs) to model temporal dependencies in
OBD-II data, and incorporate OBD-II data with other external data sources such as weather or traffic
patterns, to further improve prediction accuracy.

Acknowledgement: This work was supervised by Dr. Deepthi Das, Associate Dean, School of Science
from Christ (Deemed to be) University, Bangalore.

References

[1] I. Aris, M.F. Zakaria, S. Bashi, R. Sidek, DEVELOPMENT OF OBD-II DRIVER INFORMATION
SYSTEM, In: Proceedings of the 2007 International Conference on Communication Systems, pp. 1–
6, 2007.

[2] J. Cumin, D. Novoselović, D. Maric, T. Šolić, Maintenance of automobiles and motorcycles through
the prism of OBD II diagnostic tools, In: 2024 International Conference on Intelligent Systems,
pp. 1–16, Springer, Berlin, 2024.

[3] California Air Resources Board, On-board diagnostic II (OBD II) systems fact sheet, 2019.
https://ww2.arb.ca.gov/resources/fact-sheets/board-diagnostic-ii-obd-ii-systems-fact-sheet

[4] A. Shafi, Vehicle remote health monitoring and prognostic maintenance system, In: Proceedings of
the 2022 International Conference on Computer Applications, pp. 1–5, 2022.

[5] D. Rimpasa, A. Papadakis, M. Samarakou, OBD-II sensor diagnostics for monitoring vehicle op-
eration and consumption, In: Proceedings of the 2023 IEEE International Conference on Smart
Transportation and Smart Economy, pp. 1–10, 2023.

[6] M. Fransson, L. Fåhraeus, Finding Patterns in Vehicle Diagnostic Trouble Codes: A Data Mining
Study Applying Associative Classification, Master’s thesis, Department of Information Technology,
Uppsala University, Sweden, June 2015.

[7] A. Theissler, J. Pérez-Velázquez, M. Kettelgerdes, G. Elger, Predictive maintenance enabled by
machine learning: Use cases and challenges in the automotive industry, Reliability Engineering &
System Safety, vol. 215, 107864, 2021. https://doi.org/10.1016/j.ress.2021.107864

[8] J. Nagy, I. Lakatos, The Past, the Present and the Future of Online Road Vehicle Diagnosis from Car
and Scan Tool Communication Perspective, In: Proceedings of the 2023 Conference on Advances in
Transdisciplinary Engineering, pp. 1–8, IOS Press, 2023. https://doi.org/10.3233/ATDE230419

[9] S. Maheshwari, S. Tiwari, S. Rai, S.V. Singh, Comprehensive Study Of Predictive Maintenance In
Industries Using Classification Models And LSTM Model, arXiv preprint arXiv:2403.10259, 2024.
https://arxiv.org/abs/2403.10259

180

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

[10] D.P. Viana, D.H.C. de Sá Só Martins, A.A. de Lima, F. Silva, M.F. Pinto, R.H.R. Gutiérrez, U.A.

Monteiro, L.A. Vaz, T. Prego, F.A.A. Andrade, L. Tarrataca, D.B. Haddad, Diesel Engine Fault
Prediction Using Artificial Intelligence Regression Methods, Machines, vol. 11, no. 5, 530, 2023.
https://doi.org/10.3390/machines11050530

[11] M. Weber, Automotive OBD-II Dataset, Karlsruhe Institute of Technology, doi: 10.35097/1130,
2023.

Tanya Teresse Jarin Justin Victoria Dr. Deepthi Das
Christ (Deemed to be) University Christ (Deemed to be) University Christ (Deemed to be) University
Department of Statistics and Data Sci-
ence

Department of Statistics and Data Sci-
ence

Associate Dean, School of Science

Bangalore, 560029 Bangalore, 560029 Bangalore, 560029
INDIA INDIA INDIA
E-mail: tanya@msds.christuniversity.in E-mail: jarin.jv@msds.christuniversity.in E-mail: deepthi.das@christuniversity.in

181

9th International Conference on Applied Informatics

Imagination, Creativity, Design, Development

ICDD 2025, May 29-31

Sibiu, Romania

Assessing Visual Tracking in Children with Special Needs: A
Tool for Ergotherapists

Gokul Perumbayil Vijayakrishnan, Anagha Manikathuparambil Baby, Blesson
Manjakunnel

Abstract
Assessing visual tracking ability in children with special needs is challenging due to the limitations

of traditional observational methods, which are often time-consuming, costly, and imprecise, while also
struggling to maintain the engagement of the child. Additionally, these methods can be difficult for
therapists to interpret. This study proposes a cost-effective eye-tracking tool that enables therapists
to evaluate and enhance visual tracking abilities without the need for specialised hardware.

The tool integrates an interactive game to sustain engagement while using a standard webcam to
capture gaze data. A deep learning model then processes this data, mapping gaze direction to screen
coordinates to generate an interpretable representation of visual tracking performance. Our analysis
quantifies the correlation between predicted gaze points and the actual trajectory of a moving object
along the x and y axes, providing therapists with a visual representation of gaze behaviour.

By enabling remote assessments and minimizing logistical barriers, this tool enhances accessibility,
precision, and efficiency in therapeutic evaluations. It provides an affordable, open-source alternative
to conventional eye-tracking systems, usable on any standard computer with a webcam, and supports
data-driven intervention strategies to enhance therapeutic outcomes.

1 Introduction

Therapists who work with children with special needs generally rely on observational techniques to assess
and address developmental challenges related to communication, attention, and motor skills [5]. However,
such traditional assessment methods are inherently time-consuming, subjective, and constrained in their
ability to capture the complex dynamics of a child’s behaviour and participation over time. Furthermore,
the requirement for in-person evaluations in specialised facilities poses significant logistical and financial
challenges for families, particularly those in geographically remote or resource-limited areas [2]. These
limitations highlight the need for innovative tools that improve the precision and efficiency of therapeutic
evaluations while enabling remote accessibility.

Eye tracking technology has emerged as a promising non-invasive approach to assessing gaze patterns
and visual attention, offering objective insights into cognitive and motor functions [10]. Despite its
potential to improve therapeutic practices, adoption of such technology in clinical and therapeutic settings
remains limited due to the high cost, technical complexity, and dependence on high-precision specialised
equipment [1]. These barriers disproportionately affect underfunded therapy centres and families in rural
regions [3], increasing inequalities in access to effective interventions.

This research seeks to address these challenges by developing a cost-effective therapist-focused eye-
tracking application designed to provide meaningful, actionable insights into children’s eye movements
during therapy sessions. Unlike traditional systems, the proposed tool eliminates the need for expensive
high-precision hardware and facilitates remote access through a server-based platform. This approach
allows therapists to monitor children’s eye movement data during interactive, game-like activities con-
ducted in home environments. The platform processes and analyses this data, enabling therapists to
design personalised intervention strategies without requiring in-person evaluations.

182

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

2 Related Work

Eye tracking has been a subject of research interest for many years, with commercial eye trackers available
on the market. As of 2020, the most accurate stationary eye-tracking device was the SMI Red, offering an
accuracy of 0.4◦ at a cost of approximately $40,000 [15]. However, there remains a need for an affordable,
budget-friendly eye-tracking solution, which this study aims to address.

The model-based approach [14] involves the use of mathematical or computational models to interpret
eye movement data. A model-based eye tracking approach [8] was used to monitor gaze and provide infor-
mation to the therapists. Despite its innovative intent, this method had several limitations, including the
need for users to maintain a fixed distance from the screen, which restricted flexibility, its ineffectiveness
for children who wore glasses, and the generation of insights that lacked significant value. Our approach
aims to address these challenges, enhancing both the system’s utility and inclusivity.

In contrast, appearance-based models focus on extracting visual features from static images or in-
dividual frames to analyse, predict, and interpret patterns [13]. Compared to model-based approaches
and traditional appearance-based methods, deep learning appearance-based methods demonstrate greater
robustness in unconstrained environments, effectively handling extreme head-pose variations, diverse il-
lumination conditions, and occlusions of the eyes and face [19]. This study uses an appearance-based
model to estimate the eye gaze.

Eye-tracking technology is a valuable tool for assessing cognitive and social processing in children
with special needs, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder
(ADHD), and learning disabilities. A recent meta-analysis of 20 eye-tracking studies on face processing in
children with ASD found significantly reduced gaze fixation on the eye region, suggesting it as a potential
biomarker for ASD [4]. The study highlights the importance of gaze behaviour in ASD diagnosis and
reinforces the need for further research to enhance eye-tracking applications in special education and
therapy.

3 Methodology

The study adopts a quantitative framework to design, implement, and validate a novel tool to assist
ergo therapists in precisely analysing eye movements in children with special needs. The primary goal is
to assess participants’ visual tracking capabilities through an interactive game, leveraging cutting-edge
deep learning techniques and geometric transformations to deliver actionable insights. A camera cali-
brated using the chequerboard method will be provided to the user for operating this tool; alternatively,
users can perform the camera calibration with the chequerboard themselves at their convenience before
using the tool. The study is structured into three comprehensive phases: data acquisition through a
custom-designed game, gaze estimation and screen coordinate mapping, and performance evaluation and
therapeutic insight generation. Figure 1 shows the overall architecture of the software.

Figure 1: The diagram illustrates the system architecture for gaze tracking and analysis. The process
begins with a user wearing a band with an ArUco marker. The recorded video is processed to detect the
face, estimate eye gaze, and translate gaze vectors into screen coordinates. A filtering step refines the
predicted raw coordinates before they are compared with actual object coordinates. The final insights,
derived from this comparison, assist a therapist in understanding gaze behaviour.

183

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

3.1 Data Acquisition via Interactive Game

The data acquisition phase is central to ensuring the accuracy and relevance of subsequent analysis. A
custom-designed game engages participants while systematically capturing their gaze behaviour. The
game features a visually appealing cartoon character that moves across the screen along predefined
trajectories: horizontal, vertical, and diagonal. These simple trajectories focus on baseline gaze-tracking
metrics and coordination, without imposing undue cognitive load on the participants. During the game,
the speed of the character is adjustable, and the interface is designed to maintain the attention and
interest of children, thereby ensuring high-quality data capture.

The trajectories are logged in real time, and the precise screen coordinates of the moving character
are recorded at each frame in a CSV file for later analysis. This structured data serves as a reference
for evaluating gaze alignment. Although more intricate motion patterns, such as circular or zigzag
trajectories, could provide deeper insights into complex gaze-tracking behaviours, they are deliberately
excluded in this initial phase to minimize complexity and enhance the robustness of the foundational
metrics.

Participants are seated approximately 60 cm from the screen, ensuring a consistent spatial geometry
between the camera, monitor, and gaze direction. A standard webcam records video footage of the
participant’s face during the game, capturing fine-grained frame-by-frame details of their eye movements.
To account for participants’ positioning relative to the screen, each participant wears a headband equipped
with an ArUco marker [7], a computer vision tool that facilitates accurate real-time distance measurement.
This ensures the tool remains cost-effective by eliminating the need for expensive, specialised hardware to
measure the user’s distance from the screen, a critical factor affecting the conversion of gaze coordinates
into screen coordinates. Figure 2 illustrates the game interface alongside the participant actively tracking
the moving object.

Figure 2: A person wearing a headband with an ArUco marker is trying to track the movement of a
cartoon character in a particular direction (in this case, diagonal movement).

3.2 Gaze Estimation and Mapping to Screen Coordinates

In the second phase, the captured video frames undergo processing using L2CS-Net [6], a pre-trained deep
learning model specifically designed for gaze estimation and trained on the Gaze360 dataset [9]. L2CS-Net
predicts yaw and pitch angles, which correspond to gaze direction’s horizontal and vertical components,
respectively. This model is selected for its demonstrated superiority over traditional approaches such as
regression-based methods or geometric models [6]. While conventional techniques often require controlled
environments and manual feature engineering, L2CS-Net’s reliance on large-scale datasets allows it to
generalize effectively across diverse settings, making it highly robust and adaptive.

One critical challenge addressed during this phase is the variability in participants’ distance from the
screen. The ArUco marker enables the computation of the participant’s distance from the screen for each
video frame, which is subsequently utilised in further calculations. The distance d of the participant from
the screen can be calculated using the magnification formula for a lens as

184

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

d =
f · ho

hi
(1)

where f is the focal length of the camera obtained using camera calibration, ho is the actual width
of the ArUco marker in cm and hi is the width of the ArUco marker in pixels. Once the distance d
is calculated, a geometric transformation is applied to map the gaze angles (yaw and pitch) to precise
screen coordinates, effectively accounting for the position of the participant relative to screen, as shown
in figure 3. The equations for converting gaze angles (yaw and pitch) to pixel coordinates on the screen
are given by:

x = −d · tan(yaw), y = −d · arccos(yaw) · tan(pitch) (2)

where d is the screen distance in cm, yaw and pitch are angular values in radians. The additional
term arccos(yaw) in equation (2) is an empirical scaling factor to adjust vertical displacement based on
horizontal deviation. The conversion from cm to pixel coordinates with top left as origin is as follows:

xpixel =

(
x+ Wcm

2

Wcm

)
×Wpixels, ypixel =

(
y + Hcm

2

Hcm

)
×Hpixels (3)

where Wcm and Hcm are the width and height of the screen in cm, and Wpixels and Hpixels are the
screen width and height in pixels.

Figure 3: Translation of yaw and pitch angles into screen coordinates (x and y).

Since the raw screen coordinates obtained from gaze tracking are often noisy due to head movements,
eye blinks, and lighting variations, a Kalman filter [18] is applied to smooth the data and handle missing
values. By recursively estimating the true gaze position based on both past predictions and the current
noisy measurements, the filter improves tracking accuracy. A constant velocity motion model is assumed,
as the video is recorded at 30 FPS. The state vector of the Kalman filter consists of four components:

x =


x
y
vx
vy

 (4)

where x and y represent the estimated gaze position on the screen (after filtering), while vx and vy
represent the estimated gaze velocity in the horizontal and vertical directions, respectively. The system
follows a linear motion model:

xk = Fxk−1 +wk (5)

185

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

where F is the state transition matrix defined as:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (6)

with ∆t = 1
FPS s, with FPS denoting the number of frames per second. The process noise wk accounts

for small random variations in motion. The Kalman filter updates its estimates using the measurement
model, which includes only two components, x and y, corresponding to the observed gaze positions from
equation (3).

zk = Hxk + vk (7)

where vk represents measurement noise, and H is the observation matrix given by equation (8).

H =

[
1 0 0 0
0 1 0 0

]
(8)

At each time step, the filter predicts the next gaze position based on the current state estimate and
corrects it using the incoming measurements, effectively reducing noise and ensuring smoother tracking.

3.3 Performance Evaluation and Metrics Extraction

The final phase involves a rigorous comparison of the mapped gaze coordinates with the recorded coor-
dinates of the moving cartoon character. This comparison yields quantitative metrics that offer insights
into the participant’s visual tracking capabilities. The key metrics include:

• Cross correlation: Measures how well the gaze trajectory follows the object movement over time.
A high correlation (closer to 1) means the gaze movement aligns well with the object movement.
Cross-correlation has been widely used in gaze tracking research to quantify alignment [11].

ρx =

∑N
i=1(xg,i − x̄g)(xobj,i − x̄obj)√∑N

i=1(xg,i − x̄g)2
∑N

i=1(xobj,i − x̄obj)2
(9)

where xg,i represents the gaze position at time i, and x̄g denotes the mean gaze position. Similarly,
xobj,i represents the object position at time i, while x̄obj refers to the mean object position.

• Gaze Jitter: Measures how much the gaze position fluctuates within short time intervals. High
jitter (closer to 1) indicates noisy tracking, while low jitter suggests stable gaze tracking. This
metric has been used to assess gaze stability and visual attention in experimental psychology [12].

Jitter =
1

N

N∑
i=1

(
(xg,i − xg,i−1)

2 + (yg,i − yg,i−1)
2
)

(10)

where xg,i and yg,i represent the gaze coordinates at time i, while xg,i−1 and yg,i−1 denote the gaze
coordinates at time i− 1. Additionally, N represents the total number of gaze samples.

These metrics collectively provide a comprehensive assessment of visual tracking performance, helping
to identify specific visual-motor challenges. A low correlation in certain axes (e.g., horizontal vs. vertical)
may indicate difficulties in gaze coordination or tracking consistency. Such insights enable ergo-therapists
to design personalised interventions. For instance, if a child demonstrates strong horizontal tracking but
weaker vertical tracking, targeted exercises can be introduced to improve vertical gaze control, ultimately
enhancing overall tracking ability and engagement in daily activities.

186

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

The proposed approach prioritizes cost-effectiveness without compromising performance. By utilizing

a standard webcam and open-source software tools, the methodology avoids the prohibitive costs associ-
ated with specialised eye-tracking hardware, such as Tobii [16] or Pupil Labs systems [17]. The proposed
tool enables children to complete the test at home without requiring visits to a testing centre, while thera-
pists can remotely access insights and provide personalised recommendations. The software-driven nature
of this tool achieves an optimal balance between precision, affordability, and ease of implementation.

4 Experiments and evaluation

4.1 Evaluation Framework

To ensure the reliability and generalization of the proposed eye-tracking tool, a Python-based evaluation
framework has been developed. This framework systematically analyses the gaze data collected during the
interactive game by comparing participants’ gaze behaviour with the predefined trajectories of the moving
character. A robust baseline for gaze behaviour in individuals with normal vision is established using
mean and standard deviation. This baseline serves as a critical reference point for future comparative
studies using Z-score involving children with special needs, recognizing the challenges of directly acquiring
data from this population. By adopting a quantitative and systematic approach, the framework validates
the ability of the tool to provide actionable information to therapists while ensuring its adaptability
across diverse user groups.

4.2 Experimental Setup

To evaluate the performance of the tool under simulated real-world conditions, validation experiments
were conducted with seven participants, all of whom had normal vision. Three participants completed
the experiment twice to assess repeatability. The evaluation focused on two key metrics: correlation of
gaze position along the x and y axes and gaze jitter. All experiments were conducted in a controlled
environment to reduce external influences, such as inconsistent lighting or screen glare. Since participants
are expected to complete this assessment in a home environment, a well-lit indoor room was selected for
the experimental setup. The participants were placed at a standardised distance (60 cm) from the screen,
ensuring uniform spatial alignment between the camera, the monitor, and the participant.

To support these experiments, the system used by the participants consisted of a standard computer
equipped with an octa-core processor, 8 GB of RAM, a 1080p webcam capable of recording at 30 frames
per second, and a 25-inch Full HD display. The system responsible for video processing and result
generation was configured with a more powerful setup, featuring a 32-core CPU, 16 GB or more of
RAM, at least 8 GB of GPU memory to handle advanced processing tasks and a minimum of 1 TB of
storage. These specifications ensured seamless integration between the two systems, enabling efficient
remote monitoring and accurate analysis of gaze data.

4.3 Results

Figure 4 illustrates the trajectory of the object in the game along with the gaze trajectories of the
participants after applying filtering to the raw gaze coordinates. The plot reveals that, during the initial
frames, gaze positions deviate significantly from the object’s path. This is likely because, at the start
of the game, participants anticipate the object’s initial position and direction of movement rather than
actively tracking it. However, after these initial frames, gaze trajectories align more closely with the
object’s motion, indicating successful tracking.

Additionally, the results show that for horizontal object movement, tracking accuracy is higher along
the x-axis, while deviations occur along the y-axis. Conversely, for vertical object movement, tracking is
more accurate along the y-axis, with greater deviations in the x-axis. These deviations may be attributed
to slight changes in head orientation or involuntary eye blinks, which are difficult to control.

Table 1 provides a comprehensive summary of the experimental data. It details the mean values and
the associated standard deviations for the correlations along the x and y axes. In addition, the table

187

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

(a) Horizontal movement (b) Vertical movement (c) Diagonal movement

Figure 4: Plots showing the actual movement of an object in the game and the predicted gaze trajectory
along the x and y axes. The displayed plots correspond to the best-performing participant for each of
the horizontal, vertical, and diagonal movements.

includes the normalised gaze jitter. The data represent the averages computed from seven participants
over ten experimental trials. High correlation values in the x-direction for horizontal object movement
and in the y-direction for vertical object movement, along with overall low jitter, suggest that the tracking
performance aligns with the expected results for the typical population. The data presented in Table
1 can be used as a baseline for comparison. When the tool is applied to children with special needs,
individual performance can be evaluated using Z scores, which indicate how many standard deviations a
specific data point is from the population mean. For example, if the mean y-axis correlation (µ) for the
diagonal movement is 0.83 with a standard deviation (σ) of 0.13, and a child’s score (X) is −0.37, the
Z-score is computed as,

Z =
X − µ

σ
=

−0.37− 0.83

0.13
= −9.23 (11)

This indicates that the child’s performance is nine standard deviations below the typical mean, sug-
gesting a potential difficulty in horizontal tracking. Such quantifiable comparisons enable tracking of
a child’s progress over time, allowing for the refinement of interventions and personalised therapeutic
strategies.

Metric Horizontal Vertical Diagonal

Correlation X 0.97 ± 0.01 0.58 ± 0.26 0.94 ± 0.03
Correlation Y 0.33 ± 0.46 0.84 ± 0.05 0.83 ± 0.13
Gaze Jitter 0.13 ± 0.06 0.11 ± 0.08 0.21 ± 0.16

Table 1: Result statistics — mean and standard deviation of metrics. The table indicates that the
x-coordinate correlation is high during horizontal movements. The y-coordinate correlation is notably
elevated during vertical movements. Additionally, for diagonal movements, both the x- and y-coordinate
correlations are high.

Table 2 presents the mean and standard deviation of metrics without the application of the Kalman
filter. The comparison between Table 1 and Table 2 indicates that the application of the Kalman filter
enhances the correlation values. In Table 1, the x-coordinate correlation is higher for horizontal and
diagonal movements compared to Table 2. Similarly, the y-coordinate correlation is notably stronger in
Table 1, especially in vertical and diagonal movements. Table 2 shows a higher gaze jitter value and the
application of the Kalman filter gives a significant reduction in noise in gaze tracking.

188

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Metric Horizontal Vertical Diagonal

Correlation X 0.92 ± 0.06 0.34 ± 0.20 0.89 ± 0.05
Correlation Y 0.27 ± 0.36 0.78 ± 0.10 0.71 ± 0.14
Gaze Jitter 16.22 ± 9.96 15.28 ± 8.13 16.37 ± 8.99

Table 2: Result statistics — mean and standard deviation of metrics without using Kalman filter. The
comparison with Table 1 highlights the impact of filtering.

5 Conclusion and future work

This study introduced a cost-effective, deep learning-based eye-tracking tool to assess visual tracking
abilities in children with special needs. Given the challenges of directly testing this population, we
established a baseline using data from a neurotypical population, demonstrating the accuracy of the
tool with minimal jitter. Using a standard webcam and an interactive game, our approach provides an
accessible and engaging alternative to traditional observational methods, reducing logistical barriers while
enhancing the precision of the evaluation. The structured methodology of the tool, which combines gaze
estimation, motion trajectory analysis, and quantitative performance metrics, creates a solid framework
for future improvements.

In future work, we intend to integrate head pose estimation to address involuntary head movements,
thus further enhancing tracking accuracy. We also plan to incorporate additional gaze metrics—such
as latency, fixation sequences, and gaze heatmaps—to provide more comprehensive insights into visual
tracking behaviours and improve the overall interpretability of results.

We intend to increase the pool of participants beyond the 7 individuals involved in this study, with the
aim of approximately 30 to 40 participants to establish a more robust baseline and increase the validity of
our findings. Since children with normal vision and children with special needs are our primary focus, we
intend to include them in the participant pool. In addition, further refinements to the interactive game
design will enhance participant engagement, yielding higher-quality data and more accurate tracking.
We also plan to develop dedicated user profiles for children, therapists, and parents, allowing for more
tailored assessments and supporting long-term progress monitoring.

Finally, we plan to extend the tool’s applicability to other therapeutic contexts such as cognitive
rehabilitation and neurological assessments broadening its impact and affirming its role as a practical,
scalable solution for visual tracking evaluation across diverse clinical environments.

6 Program Code

The implementation of this paper can be found in the GitHub link: https://github.com/Project-
EyeTracking/EyeGaze

Acknowledgment: We would like to express our deepest gratitude to Professor Dr. Magda Gregorová
from the Technical University of Applied Sciences Würzburg-Schweinfurt for her invaluable guidance,
insightful feedback, and continuous support throughout this work. In addition to the guidance received,
we also utilised digital tools to support the writing process. ChatGPT was used to generate ideas for
structuring the paper and to assist in drafting clear, cohesive sections. It helped in organising the content
and suggesting ways to present the information effectively. Furthermore, Grammarly was used to review
grammar, punctuation, and style, helping to ensure the paper adhered to academic language standards
and maintained clarity throughout.

References

[1] Amanda Cyntia Lima Fonseca Rodrigues, Keun-Hwa Jung, Advancing Post-Stroke Cognitive Assess-
ments: The Potential and Challenges of Integrating Eye Tracking Technology in Clinical Practice.

189

https://github.com/Project-EyeTracking/EyeGaze
https://github.com/Project-EyeTracking/EyeGaze

9th International Conference on Applied Informatics – ICDD 2025

May 29-31, 2025, Sibiu, Romania

Cerebrovascular Diseases, 1–2, 2024.

[2] R. Ramezani, S. Iranmanesh, A. Naeim, and P. Benharash, Bench to Bedside: AI and Remote Patient
Monitoring, Frontiers in Digital Health, Volume 7, 2025.

[3] X. Hunt, A. Saran, H. White, and H. Kuper, Effectiveness of interventions for improving educational
outcomes for people with disabilities in low- and middle-income countries: A systematic review,
Campbell Systematic Reviews, 2025.

[4] Eleni A. Papagiannopoulou, Kate M. Chitty, Daniel F. Hermens, Ian B. Hickie, and Jim Lagopoulos,
A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum
disorders, Social Neuroscience, Pages 610-632, 2014.

[5] Michael D. Powers, Mark J. Palmieri, Kristen S. D’Eramo, and Kristen M. Powers, Behavioral In-
tervention Techniques for Reducing Problem Behavior, Springer Nature Switzerland, Pages 251–287,
2025.

[6] Ahmed A.Abdelrahman, Thorsten Hempel, Aly Khalifa, Ayoub Al-Hamadi, L2CS-Net: Gaze Esti-
mation in Unconstrained Environments, arXiv preprint arXiv:2203.03339, 2022.

[7] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Maŕın-Jiménez, Automatic
generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition,
Pages 2280-2292, 2014.

[8] Christeena Varghese, Vincent Wahyudi, and Viony Tengguna, App to Help Children with Special
Needs Improve Their Eye Movements and Focus, SCORES’23, Proceedings of the 9th Student Com-
puting Research Symposium, October 2023.

[9] P. Kellnhofer, Gaze360: Physically Unconstrained Gaze Estimation, arXiv preprint arXiv:1910.10088,
2019.

[10] Alexandra Wolf and Kazuo Ueda, Contribution of eye-tracking to study cognitive impairments
among clinical populations, Frontiers in Psychology, Volume 12, 2021.

[11] Andrew T. Duchowski, Eye Tracking Methodology: Theory and Practice, Springer, 2007.

[12] R. Engbert and R. Kliegl, Micro-saccades uncover the orientation of covert attention, Vision
Research, 2003.

[13] Kar-Han Tan, D.J. Kriegman, and N. Ahuja, Appearance-based eye gaze estimation, Proceedings of
the Sixth IEEE Workshop on Applications of Computer Vision (WACV 2002), 2002.

[14] Shuo Wang, Ming Jiang, Xavier Morin Duchesne, Elizabeth A. Laugeson, Daniel P. Kennedy, Ralph
Adolphs, and Qi Zhao, A typical Visual Saliency in Autism Spectrum Disorder Quantified through
Model-Based Eye Tracking, Neuron, Pages 604-616, 2015.

[15] I. Rakhmatulin, A review of the low-cost eye-tracking systems for 2010-2020, arXiv preprint
arXiv:2010.13454, 2020.

[16] Tobii Technology, Tobii Eye Tracking Systems, Tobii Technology, 2024.

[17] Pupil Labs, Pupil Labs Eye Tracking, Pupil Labs, 2024.

[18] Rudolph Emil Kalman, A new approach to linear filtering and prediction problems, Journal of Basic
Engineering, Pages 8167-179, 1960.

[19] Primesh Pathirana, Shashimal Senarath, Dulani Meedeniya, Sampath Jayarathn, Eye gaze estima-
tion: A survey on deep learning-based approaches, Expert Systems with Applications, 2022.

Gokul Perumbayil Vijayakrish-
nan

Anagha Manikathuparambil
Baby

Blesson Manjakunnel

Technical University of Applied
Sciences Würzburg-Schweinfurt

Technical University of Applied
Sciences Würzburg-Schweinfurt

Technical University of Applied
Sciences Würzburg-Schweinfurt

MAI, Computer Science and
Business Information Systems

MAI, Computer Science and
Business Information Systems

MAI, Computer Science and
Business Information Systems

Sanderheinrichsleitenweg 20,
97074 Würzburg

Sanderheinrichsleitenweg 20,
97074 Würzburg

Sanderheinrichsleitenweg 20,
97074 Würzburg

Germany Germany Germany
E-mail:
gokul.perumbayilvijayakrishnan

@study.thws.de

E-mail:
anagha.manikathuparambilbaby

@study.thws.de

E-mail:
blesson.manjakunnel@study.

thws.de

190

 LIST OF AUTHORS

Vlad-Stefan ALEXANDRESCU

SPIRU HARET University

Faculty of Eng. and Computer Science

46G Fabricii Street, District 6, Bucharest

ROMANIA

E-mail:

g.vlad.alexandrescu@spiruharet.ro

Anagha Manikathuparambil

BABY

Technical University of Applied Sciences Würzburg-

Schweinfurt

MAI, Computer Science and Business Information

Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg

GERMANY

E-mail:

anagha.manikathuparambilbaby@study.thws.de

Elena-Luiza BUZATU

National University of Science and

Technology

Politehnica Bucharest, Pitești

University Center

Faculty of Sciences, Physical Education

and Informatics

Department of Mathematics and

Informatics

Str. Targul din Vale, nr. 1, Pitești

ROMANIA

E-mail: elenaluiza10@gmail.com

Andrei DĂIAN Lucian Blaga University of Sibiu

Faculty of Science

Doctor Ion Ratiu Street 5-7, Sibiu

ROMANIA

E-mail: andrei.daian@ulbsibiu.ro

Deepthi DAS Christ (Deemed to be) University

Department of Statistics and Data Science

Bangalore, 560029

INDIA

E-mail: deepthi.das@christuniversity.in

Marian-Daniel DRĂGHICI Lucian Blaga University of Sibiu

Faculty of Science

Doctor Ion Ratiu Street 5-7, Sibiu

ROMANIA

E-mail: mariandaniel.draghici@ulbsibiu.ro

Martin S. DZHUROV

University of Rousse “Angel Kanchev”

Faculty of Natural Sciences

8 Studentska str., POB 7017, Ruse

BULGARIA

E-mail: mdzhurov@uni-ruse.com

191

mailto:g.vlad.alexandrescu@spiruharet.ro
mailto:anagha.manikathuparambilbaby@study.thws.de
mailto:elenaluiza10@gmail.com
mailto:andrei.daian@ulbsibiu.ro
mailto:deepthi.das@christuniversity.in
mailto:mariandaniel.draghici@ulbsibiu.ro
mailto:mdzhurov@uni-ruse.com

Ștefan EMINOVICI

Samuel von Brukenthal National College Sibiu

Mathemathics-Informatics, intensive Informatics

ROMANIA

E-mail: stefaneminovici@yahoo.com

Sophie GEISLER Technical University of Applied Sciences Würzburg

Faculty of Computer Science and Business

Information Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg

GERMANY

E-mail: sophie.geisler@study.thws.de

Felix HUSAC

Lucian Blaga University of Sibiu

Department of Mathematics and

Informatics

5-7 Dr. Ratiu Str, Sibiu 550012

ROMANIA

E-mail: felix.husac@ulbsibiu.ro

Ștefan-Ioan ISTINA

Vasile Alecsandri University of Bacău

Department of Mathematics &

Informatics Calea Mărășești, nr. 157,

Bacău, 600115

ROMANIA

E-mail: istinastefanioan@gmail.com

Blesson MANJAKUNNEL Technical University of Applied Sciences Würzburg-

Schweinfurt

MAI, Computer Science and Business Information

Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg

GERMANY

E-mail: blesson.manjakunnel@study.thws.de

Giorgiana-Maria MARANGOCI

Vasile Alecsandri University of Bacău

Department of Mathematics & Informatics

Calea Mărășești, nr. 157, Bacău, 600115

ROMANIA

E-mail: giorgianamarangoci@gmail.com

Peter MÖHLE Technical University of Applied Sciences Würzburg

Faculty of Computer Science and Business

Information Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg

GERMANY

E-mail: peter.moehle@study.thws.de

Rares MUNTEAN

SPIRU HARET University

Faculty of Eng. and Computer Science

46G Fabricii Street, District 6, Bucharest

ROMANIA

E-mail: g.rares.muntean@spiruharet.ro

192

mailto:stefaneminovici@yahoo.com
mailto:sophie.geisler@study.thws.de
mailto:felix.husac@ulbsibiu.ro
mailto:istinastefanioan@gmail.com
mailto:blesson.manjakunnel@study.thws.de
mailto:giorgianamarangoci@gmail.com
mailto:peter.moehle@study.thws.de
mailto:g.rares.muntean@spiruharet.ro

Mustafa Mustafov

University of Ruse

Natural science and education

BULGARIA

E-mail: s216259@stud.uni-ruse.bg

Alexandra ONOSE

Transilvania University of Brasov

Faculty of Mathematics and Informatics

Bd. Iuliu Maniu nr. 50

500091 Brașov

ROMANIA

E-mail: alexandra.onose@student.unitbv.ro

Eduard-Alexandru OPREA

National University of Science and

Technology

Politehnica Bucharest, Pitești

University Center

Faculty of Sciences, Physical Education

and Informatics

Department of Mathematics and

Informatics

Str. Targul din Vale, nr. 1, Pitești

ROMANIA

E-mail: edyoprea69@gmail.com

Vlad-Matei POIENARIU

SPIRU HARET University

Faculty of Eng. and Computer Science

46G Fabricii Street, District 6,

Bucharest

ROMANIA

E-mail: g.vlad.poienariu@spiruharet.ro

Andrei PRIBOI

Transilvania University of Bra¸sov

Faculty of Mathematics and Computer Science

No. 50, Iuliu Maniu st., Bras,ov, Romania

ROMANIA

E-mail: andrei.priboi@student.unitbv.ro

Alex-Andrei RÎPAN

Vasile Alecsandri University of Bacău

Department of Mathematics &

Informatics Calea Mărășești, nr. 157,

Bacău, 600115

ROMANIA

E-mail: darkdragondd100@gmail.com

Serkan Sadulov

University of Ruse

Natural science and education

BULGARIA

E-mail: s216261@stud.uni-ruse.bg

Serkan H. SADULOV

University of Rousse “Angel Kanchev”

Faculty of Natural Sciences

8 Studentska str., POB 7017, Ruse

BULGARIA

E-mail: ssadulov@uni-ruse.com

193

mailto:s216259@stud.uni-ruse.bg
mailto:alexandra.onose@student.unitbv.ro
mailto:edyoprea69@gmail.com
mailto:g.vlad.poienariu@spiruharet.ro
mailto:andrei.priboi@student.unitbv.ro
mailto:darkdragondd100@gmail.com
mailto:s216261@stud.uni-ruse.bg
mailto:ssadulov@uni-ruse.com

Tobias SCHNEIDER

Hochschule Landshut

Faculty of Computer Science

Am Lurzenhof 1, 84036 Landshut

GERMANY

E-mail: tobiasschneider1@acm.org

Alexandru Emil SOFONEA

Samuel von Brukenthal National College Sibiu

ROMANIA

E-mail: alex@alexsofonea.com

Kristian P. SPASOV

University of Rousse “Angel Kanchev”

Faculty of Natural Sciences

8 Studentska str., POB 7017, Ruse

BULGARIA

E-mail: kspasov@uni-ruse.com

Matei-Cristian STEAVU

Transilvania University of Brasov

B-dul Eroilor nr. 29

ROMANIA

E-mail: mateisteavu@yahoo.com

Tanya TERESSE Christ (Deemed to be) University

Department of Statistics and Data Science

Bangalore, 560029

INDIA

E-mail: tanya@msds.christuniversity.in

Ioana-Valeria TURCIN

National University of Science and

Technology

Politehnica Bucharest, Pitești

University Center

Faculty of Sciences, Physical Education

and Informatics

Department of Mathematics and

Informatics

Str. Targul din Vale, nr. 1, Pitești

ROMANIA

E-mail: turcin.ioana@yahoo.com

Jarin Justin VICTORIA Christ (Deemed to be) University

Department of Statistics and Data Science

Bangalore, 560029

INDIA

E-mail: jarin.jv@msds.christuniversity.in

Gokul Perumbayil

VIJAYAKRISHNAN

Technical University of Applied Sciences Würzburg-

Schweinfurt

MAI, Computer Science and Business Information

Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg

GERMANY

E-mail:

gokul.perumbayilvijayakrishnan@study.thws.de

194

mailto:tobiasschneider1@acm.org
mailto:alex@alexsofonea.com
mailto:kspasov@uni-ruse.com
mailto:mateisteavu@yahoo.com
mailto:tanya@msds.christuniversity.in
mailto:turcin.ioana@yahoo.com
mailto:jarin.jv@msds.christuniversity.in
mailto:gokul.perumbayilvijayakrishnan@study.thws.de

Marcel WERNISCH Technical University of Applied Sciences Würzburg

Faculty of Computer Science and Business

Information Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg

GERMANY

E-mail: marcel.wernisch@study.thws.de

Felix ZORN Technical University of Applied Sciences Würzburg

Faculty of Computer Science and Business

Information Systems

Sanderheinrichsleitenweg 20, 97074 Würzburg

GERMANY

E-mail: felix.zorn@study.thws.de

195

mailto:marcel.wernisch@study.thws.de
mailto:felix.zorn@study.thws.de

Organized with support of Romanian Ministry of National Education

Romanian Ministry of National

Education

SPONSORS (in alphabetical order)

Asociatia Sibiu IT

Asociația BIT

CodexWorks technologies

Ardeleana Academy Foundation

Global Solutions for Development

NXP

NTT Data

196

PAN FOOD

ROPARDO

Wenglor

197

http://www.ropardo.ro/

	Proceedings of the International Conference on Applied Informatics ICDD 2025
	Preface
	Scientific committee
	Contents
	Autonomous Navigation Solution Based on Embedded System and Real-Time Object Recognition, Marian-Daniel Drăghici, Andrei DăianAbstract
	EmiNet, Ștefan Eminovici
	User-Centered AI: Improving Workflows through intelligentChatbots, Sophie Geisler, Peter M¨ohle, Marcel Wernisch, Felix Zorn
	WebXR-Previs: Low-Cost System for Real-Time Previsualization and Broadcast Graphics, Felix Husac
	Implementation and Development of a Rated Voting System, Giorgiana-Maria Marangoci, Alex-Andrei Rîpan, Stefan-Ioan Istina
	SmartGarden: An Economical IoT-Enabled System for Indoor Plant Surveillance and Irrigation, Onose Alexandra Onose
	TransitAI: An AI-Powered Conversational Assistant for Public Transportation Information Access, Eduard-Alexandru Oprea, Elena-Luiza Buzatu, Ioana-Valeria Turcin
	AI Platform for Real-Time Cyber Threat Detection, Vlad-Matei Poienariu, Rares Muntean, Vlad-Stefan Alexandrescu
	Multi-Task Learning vs. Individual Models in Scarce Data Scenarios - Stock Price Prediction, Andrei Priboi
	Game Engine Development: Research, optimization and performance enhancement, Serkan Sadulov, Mustafa Mustafov
	Evaluating Log Messages Using a Big Data Approach, Tobias Schneider
	Tecky, Alexandru Emil Sofonea
	Web-based System for Dynamic Text Rendering and Interactive Content Management in Full-screen Environments in the Music Industry, Kristian P. Spasov, Martin S. Dzhurov, Serkan H. Sadulov
	Organ 3D Model Reconstruction using Point Clouds, Matei-Cristian Steavu
	Road Condition Classification and Predictive Maintenance Using (OBD-II) Data, Tanya Teresse, Jarin Justin Victoria
	Assessing Visual Tracking in Children with Special Needs: A Tool for Ergotherapists, Gokul Perumbayil Vijayakrishnan, Anagha Manikathuparambil Baby, BlessonManjakunnel

	LIST OF AUTHORS
	SPONSORS

