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Abstract

One of the main problems in Complexity Theory is the so called Subset Sum Problem (SSP). Two
algorithms for solving this problem are presented in this paper. The first one is polynomial but with
approximations. The second one is built on the basis of sequential application of ,Binary Search”, if
solution is available, it finds this solution and it has polynomial behaviour.

1 Introduction

One of the major problems in complexity theory is the so called Subset Sum Problem (SSP). Its
definition is:

Being given the integer positive number ¢ and n integer positive numbers wi, wa, .....,Wn, C2Wj,
find:

maxZwixi, (D)
i=1

satisfying the condition

n
zwixi <c
i=1

where x; are binary variables.
This problem can also be interpreted in the following equivalent form:

Provided a set of integer positive numbers W={w, wy, .....,w,} is given, does a subset W'C W

exist, such that
Z W = 2 W, 2)

weA wiEW\W'

1 n
It is evident that the first problem is equivalent to the second if ¢ = —z w; .
i=1
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It is well known that problem (1) can be solved fully exhausting all the possible 2" variants,
represented by n-dimensional binary codes. It is evident that this approach is unacceptable and is
applicable if and only if the value of n is small enough.

In this paper we suggest several algorithms, of heuristic and precision type, that are extremely
effective. The common between them is the considerable reduction of the number of variants
considered.

2 Denotations and Definitions

By F ® we denote the set of n-dimensional binary codes. The value of the scalar product W.x is

denoted by s(x). Let S is the set of all s(x), where x is the binary representation of 1, 2, ...... , 2" -1,
In stating the problem we need the function pes(l,x) that delivers the corresponding bit (0\1) to
position 1 for code x.

Definition 1. If X, € Fn2 and x, € Fn2 , we say that x; <X, if xl(w) < xgw), where X" is the
decimal value of X . But from X, < x, it does not always follow that s(x,) < s(x,).
Definition 2. We divide Fn2 to n-1 disjunctive sets, called ,,classes” K,, Ks, .....,K,. According

[2], xe K,,1=2,3, ...... ,n-1, if the following conditions are satisfied:
e pos(l, x)=1 and pos(1+1, x)=0
e in the positions from 1 to I-1 at least one more bit 1 should exist

e if pos(m, x)=0 for 2<m <1 -1 in positions m-1, m-2, ....1 no more than one bit
1 should be present.

The rest of the codes, that do not satisfy the above conditions, are of the class K.

Example: x={10011010} xe K,
x={00100011} xe K,
x={10000001} xe K,

Definition 3. The subset of the class K, of codes for which pos(l+2,x)=pos(l

+3,X)=.....=pos(n,x)=0 we call ,,pure class K,” and we denote by K.

From now on we suppose that the set W is sorted: W, 2w, ; 2.....2 W,.

3 Characteristics of set S

It is not difficult to assume that the solution of (1) is reduced to finding the maximum element of
S for these x, for which S(x) < c . If S is sorted, the solution can be found with time complexity of

O(n) by the procedure , binary search”. Unfortunately, in the general case S is not sorted. The
single case, for which this is true:
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w, 2w,  +w, ,+..+w form=23,..,n

Then for each pair x€ F” and ye F, from x<y, it follows that s(x) < s(y).

In Figure 1 is drawn the discrete graphics of S at the following data:

Ww={18, 15,12, 9, 6, 3,1}
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Figure 1
S consists of segments that are sorted. Let define the length and number of these segments. Let m
is the greatest index for which is true

m-1 -2 2
meZWi,wm_lz Wiy ,W322Wi 3)
i=1 i=1

i=

3

LN

It is evident that m could be at least 2. By m we denote ,,sorting period”.
Theorem 1. The length of each segment of the set S at sorting period m is 2™.

Proof: The first segment of S includes the values s(k), where k are the binary codes of 0, 1,
2 ,2"-1, shown in the table that follows:

m m-1 m-2........ 321

0 0 O 0 00

0 0 0 .......... 0 01

0 0 0 ...oettns 0 10

0 0 0 .......... 0 11

0 0 0 ...oetts 1 00

1 1 1. 111
It is evident that, considering (3), it is not difficult to assess that if
x" <y follows s(x)<s(y).
So S can be divided into 2"™ monotonically increasing segments with length 2™ - S;, S,,...... , S

The limits of these segments are at:

[s(0),s(2™ =1)]; [s(2™), s™ =DJ;ueeeee... [s(2"™), s(2" -1)] .

123



The Subset Sum Problem

The elements of S, are obtained from S; by adding wm+ to each element, the elements of S; are
obtained of S, by adding wm.. to each element, etc.

4  Algorithm Al

1) Q={[o, 2*-1]}

2)  We bisect the interval [0, 2"-1] and scrutinize the intervals [0, 2™'-1] and [2™, 2"-1];
determine to which of the intervals [s(0), s(2"'-1)] and [s(2™", s(2"-1)] belongs c. The case ¢ to
belong to both intervals is not excluded. We form a new set Q of these intervals.

3) For each interval of Q we apply the bisection procedure and again we form the set Q, until the
length of intervals of Q becomes equal to 2™

4) For each interval, that defines increasing sorted segment, we apply the procedure “binary
search” with time complexity m = Log,2" to find maximum element, not surpassing c in a sorted
array.

4.1 Analysis of Al

The efficiency of this algorithm depends considerably on m - ,;sorting period”, and on the value of
¢ too. The greater m the less is the number of monotonic segments. If we denote with z the
number of intervals containing c, the efficiency of the algorithm is O(z.m).

Surely, the power of z can be reached in the worst case 2"™. But in these cases we can restrict
ourselves to considering only and only the allowed number of segments. At last, the solution for
each segment is allowable and can be considered as a solution, near to the optimal.

5 Algorithm A2

Prior to explaining this algorithm, the classes K, and subclass K are considered. Let find the

powers of these sets. These are the codes of K/ :

0...0100...001
0...0100...010
0...0110...000
0...0110...010

0..0111...111

It is not difficult to compute that

I(1-1 +1 I(1-1 +1
Ky =D . ) 1=2,.n-1 K2 =MD 4k, = 12D . ) 1=2,..n-1K, |z "+D
For the classes considered we will prove the following theorem:

Theorem 2. If x,y€ K and x <y then s(x) <s(y)
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Proof: Let X< . This means that for j<I
pos(l,x) = pos(l,y) =1, pos(l -1,x) = pos(l-1,y) =1, ...., pos(l — j,x) = pos(l — j,y) =1,
and pos(l—j—1,x)=pos(l—j—1,y)=0

Therefore, if the position of next remaining single 1 for x is p, and for y is q, then it is evident
that pos[q,y]>pos[p,x] and w,<wg, from which we can conclude that

1 1
s(x) = Zwi +w,, s(y)= Zwi +w, or s(x) <s(y)
i=l-j i=l-j

The theorem just proved, it follows that the set {s(x)|xe K’} is sorted for each 1=2,3,....,n.

The solution of (1) we search sequentially in ,,pure classes” K;,K7,...., K[, that are sorted. And

that makes the algorithm heuristic, i.e. the solution is not always optimal but is very close to
optimal. Computer-based experiments confirmed the latter conclusion. On finding the best ,,pure”
solution, the latter can be improved if necessary. That is the short description of A2:

1) x, = max{s(x),xe K/}, =2,3,..,n

2) X, =max{X,, Xy,...., X, }; Spax = S(X,)

3) if S, =C — Stop ,else 4)

4) for x < x,,x€ K/ we search max{w, ,,, W, ,5,...., W,_}, so that

w,. <Cc—S§

i max

W, €{W0s Wiz oo W, }
if we find solution in the i-bit of Xx,i€ {l +2,1+3,....,n} we insert 1, hence x€ K, \ K/ . For the
new x we apply 4). i.e. we search max{w, ;, W, ,,...., W, } so that

W, SC=S, —W, W, e{wW, ;, W5, W} etc.

Step 4) is performed using “binary search”, applying an idea from [2].

5.1 Analysis of A2

I(1-1 +1
Considering that | K/ |= ( 5 ),l =23,...,n-1,| K’ |:% finding out S, has time

= k(k -1
complexity O(Z log, ( )
k=2

), which is in the order of magnitude of In(G[nlG[n—1]), where

G is the well known special Euler function. Even if we take for granted that each class K/ is

with length n, processing n sorted classes will take time much less than 2nlog, n or
In(G[n]G[n—-1]) < 2nlog, n

In Figure 2 are shown graphics of the two functions for n<5000.
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6  Algorithm A3

This algorithm is a result of the application of the so called ,greedy algorithm” that is
implemented by repeatedly applying the “binary search” and backtracking. Step-by-step
description of the algorithm follows:

1) w, =max{w,,w, ,..,w}<c
w, =max{w, ,, W, ,,...,W;}Sc—w,
w, = max{wim_l, Wi ppeeens wisc—-w, —w, —..—W,
2) code p; is generated with pos(i,, p,) =1, pos(i,, p;) =1;......; pos(i,, p;) =1
3)if w, +w, +...+w, =c— Stop
4) pos(iy, p;) =0
5) steps 1), 2), 3) are repeated for the set {W,-k,l, Wi geeenees ,W,} and c=cC— W,

At last, a sequence of codes pi, p2,.... is obtained that reaches to the solution.

In the graphics below is shown how it can be reached to the solution of (1) passing through 7
iterations for an instance of n=50 , c=4000 and w; generated in random.
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7 Conclusion

Each of the algorithms presented has its advantages and disadvantages.

In algorithm A1 the original idea is the bisection of set S to sorted segments and search for
the solution in a part of these segments. This idea is subject to future development.

Algorithm A2 has the most effective time complexity, when searching for a solution in the so

called ,,pure” sorted classes K;,K?,...,K?”, but it not always yields optimal result, no matter

how close to it. This conclusion is confirmed by the numerical experiments made.
Algorithm A3 is a combination of ,greedy algorithm”, “binary search” and ,backtracking”. It
always yields the optimal solution, but it is very difficult to evaluate its efficiency. The numerical

n
experiments demonstrated polynomial complexity when max 2 WX, =C.
i=1
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