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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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Abstract 

The active PTZ (Pan Tilt Zoom) camera is a key element of an intelligent surveillance system. The 
opportunity to control camera parameters significantly increases the abilities of these cameras as 
information sources. It is commonly regarded that a camera gives 2D presentation of 3D scene. The 
depth of the scene is irrevocably lost and only some image features may indirectly reveal the position 
of the objects in third dimension. The active camera can partially overcome this loss of information. 
The suitable control of camera parameters may be used for estimation of the depth of the observed 
objects. The paper discuses one of the methods for 3D scene restoration called “depth from defocus” 
and its inherited characteristics. All key points of the approach realization are described and 
commented. Experimental studies, using test patterns and real objects are presented to test its 
applicability. 

1 Introduction 

Many scientific and engineering applications require characterization of objects and 
phenomena occurring in our three-dimensional world. It is commonly regarded that the 
widespread digital cameras with CCD (Charge-Coupled Device) and CMOS (Complimentary 
Metal-Oxide Semiconductor) image sensors produce 2D presentation of the 3D environment. In 
that registration the location of objects such as angular coordinates in horizontal and vertical 
direction remains the same, but information about the distance to the objects is irrevocably lost. 
The restoration of the third dimension is, however, critically important for determining the actual 
spatial arrangement of objects, object tracking, understanding the spatial-temporal relationships 
between objects, evaluation of their behavior, and predicting future events. Scientists have long 
attempted to develop hardware and software tools for 3D recovery. Nowadays, there are 
professional CMOS video cameras, specially designed to capture video with depth information [1, 
2], but unfortunately, they are too expensive and their resolution is a long way away from the 
quality of the usual CCD and CMOS cameras used today. Therefore, more research efforts are put 
into a software solution to the problem with standard video sensors. 

Most of the currently available techniques on visual 3D recovering have focused on 
multisensor approach (stereo vision) and other algorithms that require multiple images, such 
as structure from motion, shape from shading, range from focus and depth from defocused 
images [4]. Depth estimation using frames from single camera is a difficult task, and it 
requires some prior knowledge about the scene and the global structure of the image. In this 
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paper, the problem of estimating distances to the objects in indoor scenes is discussed on the 
base of the well-known depth from defocus approach. This technique is the most attractive 
one with little hardware requirements, the small number of processed image frames and the 
absence of content-based image analysis. However, adequate spectral content and accurate 
information of the lens parameters of camera system must be ensured to get good estimates of 
the depth.  

The automatic depth estimation requires several challenging problems to be successfully 
resolved during the camera frames analysis [9]: (i) image texture analysis; (ii) noise estimation for 
the processed part of the image frame; (iii) blur spot diameter determination; (iv) outlier detection 
and elimination; (v) distance/depth estimation. 

The remainder of the paper comprises four sections. The second part gives the necessary 
mathematical information about depth from defocus approach. The third section deals with 
proposed in the paper solutions of the problems, cited above. Some experimental studies, results 
and concluding remarks are discussed in the last two sections. 

2 Mathematical background of depth from defocus 
approach 

The defocus information in the image of an object formed by a camera system can be used to 
determine the distance (i.e. depth) to this object from the camera. The general principle of the 
methods for depth estimation by defocus exploits the physical effect produced by the modification 
of the focus length or the lens aperture, and the distance to an object on a received image. When a 
camera is focused on an object at a certain distance a clear (sharp) image is produced but other 
objects, both closer and farther than the focus distance, form spots more or less blurred according 
to their distance to the image plane (Figure 1). In case that the sensor is nearer or farther away 
from the lens than the corresponding lens focus length, the image becomes blurred due to the 
intersection of light rays either in front of, or behind, the sensor (image) plane. Another factor 
affecting the blur is lens aperture (iris). Decreasing a lens opening narrows the light rays passing 
through the lens and reduces defocus spot diameter. Practically, this means that the smallest lens 
opening will give the sharpest image for a scene of several objects at varying distances. When the 
aperture is relatively larger (i.e. the lens opening increases), the blur spot diameter becomes 
larger.  

The methods proposed in the literature for depth estimation from blur [3]-[8] use different 
optical properties of the camera model. The most frequently used model with an intermediate 
level of complexity is thin lens model. It replaces the multi-lenses camera optic with a thin lens 
and the geometrical optics is used to derive some basic characteristics of focusing (Figure 1(a)). 
The Gaussian lens law postulates that:  

 
fimfob DDf

111
+=  (1) 

where f  is the focal length of the lens, fobD  is the distance from the object point to the lens 

center, and fimD  is the distance from the lens center to the plane on which the image of the 

observed object is in perfect focus. From Eq. 1 it follows that for a chosen focal length there is an 
infinite numbers of pairs ( fobD , fimD ), satisfying the equation. The pointed ambiguity shows that 

some restrictions have to be introduced to the camera model. These constrains stem from the 
realization of optical sensors. Choosing a suitable zoom setting, the user defines indirectly the 
scale parameter M – the ratio between the size imL  of the image of an object on the sensor matrix 
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and the actual size obL  of the object. The scale uniquely defines the relation 
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with sensorccdd  and with FOVd  - the diagonal of field of view at distance obD . Furthermore, an 

additional valid constrain is: constDDD fimfob ==+ .  
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FIGURE 1. Image formation process using thin lens camera model  
 

Let 2σ  denote blur spot diameter (Figure 1 (b)), rimD  is the distance from the lens center to 

the plane of the taken image, 2B  is the diameter of the lens aperture, fobD  and fimD  are 

previously defined distances from the lens center to the object and to the plane of the focused 
image. All these parameters are related by the following equation:  

 )(2
2 fimrim

fim

DDabs
D

B
−=σ  (2) 

The distance fimD  is expressed from the lens law:  
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Let consider that the real image plane is a focused image plane for an object, placed at 
distance obD (Figure 1(b)). Thus, Eq. 1 can be used again to express rimD : 
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Substituting Eq. (3) and (4) into Eq. (2) gives: 
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According to Eq. 5, the diameter of the blur spot physically depends on the lens parameters 
( 2B  and f ) and the depth fobD  of a scene point. Thus, focusing camera on different distances, 
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i.e. varying the focused distance obD , we obtain the functional dependency of blur spot diameter 

on obD , as it is shown on Figure 2, and therefore the distance fobD  can be calculated.  

The ambiguity in determining the distance fobD  for a particular object point is due to the lack 

of function monotony (Figure 2). The object can be located at two different distances for one and 
the same value of the blur diameter. An example of the above statement is presented in Figure 2 
where Point 1 corresponds to the distance of 2200 mm and Point 2 corresponds to the distance of 
4700 mm - in this case, an enormous inaccuracy in the distance estimation for one and the same 
blur diameter can be detected. This uncertainty could be resolved by combining blur 
measurements from more than two images, obtained for different focal length settings of the 
camera. 
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FIGURE 2. Dependency between blur spot diameter and distance  
to the object in case of a camera focused on distance of 3000 mm 

3 Automatic depth estimation using “depth from defocus” 
approach 

The generous algorithm of depth from defocus approach consists of the following steps: (1) 
Acquiring several image frames of the observed scenario with static camera under different 
focused distances (the camera settings remain the same, except for the focus setting). (2) Noise 
estimation. (3) Selection of the features/fields, depth of which will be evaluated. (4) Blur spot 
diameter determination. (5) Depth estimation of each features/fields in the image. These steps will 
be described in the following subsections. 

3.1 Perceiving image frames 

Two types of frame samples are perceived. The first sample consists of two or more frames, 
acquired under equal camera setting to estimate the noise in the images. The second sample 
consists of three or more frames taken at different focus settings of the camera. The minimal 
number of frames necessary for depth estimation is four (2+3=5 frames, but one of the frames in 
the first sample may used in the second sample too). The time interval for receiving such a 
quantity of frames usually does not exceed several hundreds of milliseconds. It is considered that 
this interval is small enough to regard the scene static. The assumption of static scene is not valid 
for the case of fast moving objects and an additional step for feature registration is required to be 
inserted into the general algorithm of depth recovery.  
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3.2 Noise estimation 

Noise is the most important parameter, characterizing the quality of received images. The 
images with low level of the noise further better blur spot diameter estimation and thus enhance 
the accuracy of depth estimation. The International Standard IEC1146-1 regularizes the procedure 
of signal to noise ratio (SNR) for analogue cameras in laboratory conditions, but this approach is 
inappropriate for real time application. The SNR in image sensors can be determined by the ration 
of generated charge carriers (signal electrons) to the number of unwanted charge carriers (noise 
electrons). Let assume that the noise signal in an image pixel (i,j) is independent, identically 
distributed (iid) additive and stationary Gaussian with zero mean: 
 )()()( ,,, nNnSnI jijiji += , (6) 

where )(, nS ji  is the useful signal amplitude from the n-th image frame, )(, nN ji  is the 

corresponding noise signal and )(, nI ji  is the received noisy signal. The intensity level of received 

signal is known and it is easy to be measured. The main problem is to evaluate the amplitude of 
the noise. The noise level may fluctuate given different conditions of work and have to be 
estimated without usage of calibrated sources of light. We propose to use the difference signal of 
two consecutive image frames with the same camera settings to estimate the noise level [13]: 
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In the case of static scenes (static illumination and static objects), the difference signal will be 
mainly generated from noise. Even of the case of slight changes the difference of useful signal 
will be greatly depressed. The remaining image signal may be additionally removed by high pass 
filtering. At the same time (in the case of difference signal analysis) the noise variance will be 
doubled. Thus, the estimated level of noise variance will be: 

 
2

2
2 D
N

σ
σ = , (8) 

where 2
Dσ  is the estimated noise variance of the differential image.  

If the noise is position dependent, the noise evaluation is performed for the pixels of the 
feature/field of interest. 

3.3 Selection of features/fields 

The selection of features/fields for depth evaluation is very important task, unresolved until 
now. It is clear that every pixel in the image plane corresponds to a point (area) from the scene 
with unique depth (at a given distance). The ambition to work with particular points can not be 
realized due to the lack of methods for blur estimation on a point. 

All other suggested methods are based on multipoint analysis. These approaches have a 
serious drawback – there is not guarantee that all points correspond on one and the same depth.  

Lines (edges, contours) in the image are the most commonly preferred features to be 
processed. Usually the choice of lines is validated by the fact that they determine the plane 
borders, and the scenes contain many lines and particularly straight lines. There are many well-
developed relatively simple algorithms for line determination – Canny, Sobel, and etc. The very 
strong benefit of the line exploration is that the intensity change on them is assured. 

Often the rectangular fields of different sizes of the image are analyzed. The study of intensity 
deviation in the field is mandatory for robust depth estimation. If the intensity deviation for all 
processed image frames doesn’t exceed the noise variance for the same field, that field will not be 
useful in depth estimation. 
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3.4 Blur spot diameter estimation 

The method used to estimate the diameter of the blur spot belongs to the so-called “early 
methods” of blur estimation. It relies on the analysis of lines detected in a camera image and it is 
well established with known pros and cons.  

In this investigation the gradient analysis of image intensity in direction, orthogonal to the 
edge line, is used to estimate blur spot diameter. In many cases the gradient analysis is applied to 
a part of a line. The integration reduces the influence of additive Gaussian noise and improves the 
accuracy of the result. The brightness profile for different focus values – 1.3m, 1.4m, 1.5m, 1.6m, 
and 1.7m is depicted on Figure 3. The blur spot diameter estimate is received from the width of 
the brightness profile. In the case when the local template in the processed field disturbs the 
brightness profile the results are far from the true estimate. 

 

 
FIGURE 3. Brightness profiles on different focused distances  

3.5 Automatic depth estimation using “depth from defocus” approach 

It is proposed the object-to-camera distance evaluation to be performed by applying an 
optimization procedure. The nonlinear curve fitting task for depth estimation from defocus blur is 
determined in least squares sense: find the vector P  of estimated parameters that minimizes the 

criterion ( )�
=

−
m

i
iiobDPF

1

2
))(2))(,(min σ , where m  is the number of the processed image frames, 

received on different camera focus settings. Here ))(,( iobDPF  is the function from Eq. 5, 

calculating blur spot diameter for the used camera focus settings (distances miiDob ,...,1),( = ) 

and focal length f . The blur spot diameters )(2 iσ  are measured for one and the same observed 
object in the processed image frames.  

The parameter vector P  consists of three elements: the real distance to the object fobD , the 

iris diameter 2B  and the scaling coefficient M . The objective function is subject to constraints in 
the form of parameter bounds. The set of lower and upper bounds of the estimated parameters is 
determined by the admissible ranges of the camera parameters and the distance to the object. As 
can be seen from Figure 2 and Eq. 5, the objective function is nonlinear and its solution requires 
an iterative procedure to establish a direction of search the optimal value of the estimated distance 
to the object. This is achieved by the Levenberg–Marquardt algorithm [10-12], which interpolates 
between the Gauss–Newton algorithm and the method of gradient descent. The iterative 
minimization procedure starts, using an initial guess for the for the parameter vector P . The 
convergence of the algorithm to final solution - the global minimum, depends on the initial values 
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of these parameters, as well of the data obtained from measurements of the blur spot diameter. 
Usually the starting point for the estimated depth is chosen to be equal to the focused length of the 
camera, corresponding to the minimal blur in the received image frames.  

Sometimes, the blur spot diameter cannot be properly estimated in the real scene images. This 
requires some additional blur estimates (a larger sample) to be taken and the outliers to be 
removed. Additional data are obtained, analyzing more images of the same object, taken at 
different focused distances. The outlier rejection is performed applying a simple procedure that 
detects the outliers by their relatively larger residuals. Then the optimization procedure restarts 
from the last “quasi-optimal” point. 

4 Experimental results 

Our experimental work has two goals: (i) to verify the applicability of the mathematical model 
to the practical camera system we use and to explore the dependency between the camera 
parameters and the scene characteristics and (ii) to test the evaluation accuracy of the recovered 
depths in a real scene. Two sets of experiments are conducted using Axis214 PTZ IP video 
surveillance camera.  

 

   
(a) Test templates – scene 1 (b) Real scene 2  (c) Real scene 3 

FIGURE 4. Experimental scenario 
 
In the first group of experiments seven planar patterns, having two types of vertical edges 

– “inside” edges (belongs to the same plane of the pattern) and “outside” edges (formed on 
the transition from one pattern to another) with high contrast are placed at different, a priory 
known distances from the camera (Figure 4(a)). Three identical experiments were conducted: 
for shorter distances (1-4 m), for the middle distances (3-6 m) and for longer distances (4-7 
m). The patterns (templates) are positioned at intervals of 50 cm. The camera is focused 
consecutively on each template under different zooms in the range of 6x-9x. The width of blur 
is calculated for the different camera parameter settings. The difference in pixel intensity is 
used in order to reduce the influence of the changes in illumination. The influence of the 
additive Gaussian noise is lowered by integrating up to a hundred points per line.  

The second group of experiments concerned real partially structured scenes with many vertical 
lines (Figure 4(b,c)). The real distances to the object edges were measured in advance by laser 
distance meter Leica DISTO D3, with measurement accuracy of ±1 mm. The camera is focused 
consequently on different distances – from an initial selected position through 50 cm and under 
different zoom settings. 

The received image frames were sequentially processed by several procedures: (i) utilization 
of a Canny algorithm for edge detection and localization; (ii) estimation of the blur spot diameter 
of the discovered edges; (iii) utilization of the Levenberg–Marquardt optimization procedure, 
using the blur estimates of the same edge in several frames as input data; (iv) object points 
distance calculation. Some of the results obtained during the experiments are shown in Table 1. 
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TABLE 1. Multiple depth recovery: accuracy evaluation. 

Test templates – scene 1 Zoom 9x 
 Inside Edges Outside Edges 

Real Scene 2 

Zoom 6x 
Real Scene 3 

Zoom 6x 

Real 
distance 

[m] 

Estimated 
distance [m] 

Estimated 
distance [m] 

Real 
distance 

[m] 

Estimated 
distance 

[m] 

Real 
distance

[m] 

Estimated 
distance 

[m] 

3.0 3.16 2.67 1.37 1.30 3.78 1.64 
3.5 3.20 3.27 1.77 1.68 3.22 1.20 
4.0 3.65 3.72 2.43 1.49 2.81 2.50 
4.5 3.91 4.02 2.04 1.99 2.47 1.75 
5.0 4.54 4.68 2.04 1.62 1.69 1.65 
5.5 4.83 5.04 1.91 1.92 1.65 1.49 
6.0 5.27 4.91 2.06 1.86   

* Focused distances: 1 – 3 m (real scene); 3 - 6 m (test templates)  

5 Analysis of results and concluding remarks 

In this paper a realization of an approach for computing distance to scene objects when 
multiple, defocused images are captured from active camera is proposed. The depth recovery task 
is presented as non-linear line fitting optimisation problem. The received at this early stage of 
evaluation results show that the proposed technique for estimating the distance to the object points 
is effective for the purposes of automatic depth perception. In some cases, independently of its 
easy implementation, it can yield to inaccurate results (see Table 1). The main sources of errors 
are: (i) improper calibration of camera parameters; (ii) lack of noise level estimation; (iii) failures 
in edge detection and localisation; (iv) inaccurate blur spot diameter estimate for an edge point. 
Furthermore, it should be noted that the experimental evaluations were conducted with 
conventional video surveillance PTZ camera, which is not specially designed for depth estimation 
purposes.  

The thorough analysis of the main sources of errors and careful tuning of parameters of the 
used algorithms may limit the errors in the distance evaluation to a few percent. Unfortunately, we 
did not find a testbed for evaluation of depth recovery algorithms for a single PTZ video 
surveillance camera. 

• Based on the performed experimental work with test patterns and real scene targets, the 
following conclusions and recommendations can be drawn:  

• Estimating the scene depth from defocus using Levenberg–Marquardt algorithm requires at 
least three (better 5 or more) image frames, captured at different focused distances due to the 
number of the estimated parameters and the presence of outliers. 

• The parameter of crucial importance on depth estimation procedure is the blur measure in 
defocused image frames. In most cases, the distance estimation errors for the 'inside' and the 
'outside' edges of the test patterns are approximately equal (Table 1). However, the analysis of the 
edge intensity profile did not proved itself as reliable algorithm in real scenes, where the edges 
may have different local structure. The standard gradient operators fail to detect and localize 
edges when the blur scale, contrast and image noise level exceed some admissible threshold, and 
therefore the wrong results are received (Table 1, Real scene 3, Real distances 3.78 m and 3.22 
m). 

• It is necessary to recommend situating camera focus around or in the front of the object, 
rather than behind it, because the errors in blur spot diameter estimation on the steepest part of the 
function (Figure 2) lead to smaller errors in distance estimation. 
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