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On the approximate solution of a functional-integral equation
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Abstract

In this paper we consider the following functional-integral equation with linear modifications
of the arguments:

() = / ’ / " K (s, tu(s, ), u(hs, £), uls, pt))dsdt, (z,y) € [0,a] x [0,5],

where 0 <A< 1,0<pu<1, K ¢€C([0,a] x[0,b] x R?).

Using the Picard operators’ technique we obtain existence and uniqueness results for the solution
of this equation.

By applying the successive approximations method and by using a cubature formula we give an
algorithm for the approximate solution.
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1 Introduction

Many problems from astronomy, chemistry, biology, economics, engineering lead to mathematical models
described by functional-integral equations.

The theory of functional-integral equations has been developed in the last fifty years. Many mono-
graphs appeared: Bellman and Cooke [3] (1963), Halanay [14] (1965), Elsgoltz and Norkin [9] (1971),
Bernfeld and Lakshmikantham [4] (1974), Hale [12] (1977), Lakshmikantham [19] (1984), Azbelev, Mak-
simov and Rahmatulina [1] (1991), Corduneanu [7] (1991), Gopalsamy [10] (1992), Hale and Verduyn
Lunel [13] (1993), Guo, Lakshmikantham and Liu [11] (1996) such as a large number of papers. We quote
here [2], [5], [15], [25], [31], [33].

A special class is represented by the integral equations with affine modifications of the arguments,
which can be with delay or with linear modifications of the arguments. The latter equations have been
developed in connection with the pantograph equation z’(t) = az(\t) and in connection with problems
for the mentioned equation and for some of its generalizations (see [17], [18], [24], [32]).

Various Darboux-Ionescu problems for some equations with deviating arguments were presented by
LA. Rus in [27]. These problems are equivalent to some functional -integral equations.

In this paper we consider the following functional-integral equation with linear modifications of the
arguments:

u(z,y) = /OI /Oy K(s,t,u(s,t), u(As, t), u(s, pt))dsdt, (z,y) € [0,a] x [0, ],
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where 0<A<1,0<pu<1, K eC([0,a] x[0,b] x R3).

Using the Picard operators’ technique (see I.A.Rus [29]), we obtain existence and uniqueness results
for the solution of this equation.

By applying the successive approximations method and by using a cubature formula (see D.V. Ionescu
[16]) we give an algorithm for the approximate solution.

2 Existence and uniqueness of the solution

Let (X, d) be a metric space and A : X — X an operator. We denote by

Fy:={z € X|A(z) = z} - the fixed point set of A;

AV :=1x, AV := A, A" := Ao A", n € N.

Definition 1 (Rus [29]) The operator A is a Picard operator if there exists x* € X such that:
(i) Fa={z"};

(i1) the sequence (A™(xo))nen converges to x*, for all zp € X.

Definition 2 (Rus [29]) The operator A is a weakly Picard operator if the sequence (A™(xg))nen
converges for all xg € X and its limit (which may depend on x¢) is a fized point of A.

Remark 1 If the operator A is a weakly Picard operator and Fa = {x*}, then A is a Picard operator.

Now, we consider the functional-integral equation:
Ty
u(eg) = [ [ Kls.touls 00005, 0),u(s, ) dsct, (2,) € 0.0] x 0.8, (2.1)
o Jo

where 0 < A< 1,0< u<1, K €C([0,a] x [0,b] x R?).
We consider the Banach space (C[0,a] x [0,5],]|.||5) , where

— —7(z+y) cR
HUHB (m,y)e%ii;](x[o,b] \u(x,y)|e y T +>

and the operator A : (C[0,a] x [0,8],|]-||5) — (C[0,a] x [0,8],]|.]|B) , defined by

A(u)(z,y) = /OJC /oy K(s,t,u(s,t), u(As,t),u(s, ut))dsdt.

We can write the equation (2.1) as a fixed point problem of the form: « = A(u).
We have

Theorem 1 We suppose that:
(i) K € C([0,a) x [0,8] x R?);
(i) there exists L > 0 such that

|K (s, t, w1, v1, w1) — K(s,t,ug, vo, w2)| < L|ur — uz| + |v1 — v2| + w1 — wa),
for all (s,t) €[0,a] x [0,b] and all w;,v;,w; € R0 =1,2.

Then the equation (2.1) has a unique solution in C([0,a] x [0,b]) and this solution can be obtained
by the succesive approzimation method, starting from any ug € C([0,a] x [0, 0]).
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Proof. We have

A (2. y) — AW)(z.y)| <
o uls — u(s e—T(s+t)eT(s+t) B
_L</0 /0<\ (5.8) — v(s. )] dsdt-+

Ty
+/ /(|u()\s,t)—v()\s,t)\6_7(’\5+t)67(’\3+t)dsdt+
0

x Y
+/ / (s, pt) = v(s, ut) e~ 0T (40 dg ity <
0 0

L 1 1L i
§72(1+ﬁ+72)6 +y||u—v||3
Therefore,
A A —T(z+y) < L 1 1 1
|A(u) (2, y) — A(v)(z,y)le < 5 +ﬁ+ﬁ)|\u—vlls
for all (z,y) € [0,a] x [0,D].
It follows that I ]

1A~ AW)lls < S50+ 55 +1>||u oll,

for all u,v € C([0,a] x [0,0]).
By choosing 7 € Ry large enough, we have that A is a contraction. So A is a Picard operator. O

)\2

Now, we are looking for the solution of (2.1) in the following set

Y = {ueC?(0,a] %[04, )IHUlIc<Rl»\lf\lc<Rz,H*Hc R,

0%y o%u
—_— <
158le < Rullmlle < Roli5 S

R, > 0,i=1,6,J=[-r,7],r >0}

HC < RG»

Here ||.||c is the Tchebyschev norm.

Consider the Banach space (Y,]|.||g) and the operator C: (Y,[|.||5) — (C?([0,a] x [0,b],J),]||.||5)
defined by

C(u)(x,y) = /033 /011 K(s,t,u(s,t),u(As, t),u(s, ut))dsdt,

where K € C%([0,a] x [0,b] x J3).
We denote
OBl K

max .
[0,a] % [0,b] x J3,| 8] <2 | 05P19tP2 HuPs Jvbs Hwbs |

M =
Therefore

0 0
1C(W)(z,y)llec < Mab, ||5-C(u)(z,y)llc < Mb, IIa*yC(U)(fE,y)Ilc < Ma,

2 2

||%C<u)(w’y)llc < M1+ Ro(A+2))], ”a SC(u)(z,y)lle < Ma[l + Ry(A+2)],

62
I 0x 0y

Clu)(z,y)llc < M.

We have
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Theorem 2 We suppose that

(i) K € C?([0,a] x [0,b] x J3);
(i) there exists L >0 such that

|K (s,t,u1,v1,w1) — K (8,1, uz, v2, wa)| < L|ur — ug| + o1 — va| + [w1 — w2)
for all (s,t) €[0,a] x [0,0] and all w;,v;,w; € J,i=1,2

(iii) Mab < Ry, Mb< Ry, Ma < Rs, Mb[1+Ro(A+2)] <Ry, M < Rs5, Ma[l+Rs(A+2)] < Rs
Then the functional-integral equation (2.1) has a unique solution in Y

Proof. The equation (2.1) can be written as a fixed point problem u = C(u)

= . The condition
(#3) insures us that Y is an invariant subset for the operator C. Similarly as above, by using () we
obtain that C is a Picard operator. [

3 The approximate solution

We give an algorithm for the approximate solution of the equation (2.1)
We suppose that the conditions in Theorem 5 are satisfied

Let u* € Y be the unique solution of this equation. This solution can be obtained by the succesive
approximations method starting from any wug € Y. Consider wug(x,y) = ug, where

ug € R. Then

Yy

(2,y) == / K (s, 1, w, w0, wo)dsdt, (. ) € [0,a] x [0, b];
0 0

2(@,y) = /Om /OyK(s,t,ul(s,t),ul()\s,t),ul(s,ut))dsdt, (2,y) € [0,] x [0, 1]

Un(2,9) :/0 /0 K(s,t,tn—1(8,t),un-1(AS,t), un—1(8, ut))dsdt,
(x,y) € [0,a] x[0,b];

We use the cubature formula (see D.V. Ionescu [16])

p—1 D
ba

a prb qg—1
/O /0 f(a,y)dedy = %[gjm,m+ij<a:j,b)+l;f<o,yl)+

—1 p—1lqg—1
Jrz a, yi JrQZZf i, y) + Ry (3.1)
=1 j=11=1

An upper bound for the remainder Ry is given by

ab  a? ab  b?
— 4+ — M-
\Rf|712( +3pq+q2) 2,
where

M. .
2T [Oa]xob]{ (’“)352‘ ‘&Cay' | |}
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Here

< 1 <. <721 <7; <...<7Tp-1<a,
Y1 <o <Y1 <Y < .. < Yg—1 < b,

and z;=%j,j=Tpy=2l1=T14
We have

Theorem 3 We suppose that all the conditions in Theorem 5 are satisfied. The values of the succesive
approzimations sequence on the knots (x;,yx) € [0,a] x [0,b], i =0,p,k =0,q are

i—1

ba
un (@i, yr) = %[ZK(Ij707un—1($j70)7un—1()\xj70)7’%—1(%‘70))+
=0

K (5, Y un1 (25, ) un—1 (AL, Yk), tn -1 (25, iyk)) +
j=1
k—1
+ Z K(Oa Y, un—l(oa yl)7 un—1(07 yl)a un—1(07 Myl)) +
=1
k—1
+ Z K(a7 Y, un—l(a’a yl)7 un—l()\a7 yl)a un—l(ay ,Uyl)) +
=1

i—1 k—1

+2 Z Z K(xja Y, un—l(xj7 yl)a un—l()‘xjv yl)a un—l(mja ;u'yl))] +
j=11=1

+Rn,i7k7 (32)

where i=1,p, k=1,q, n € N*, and

b a? b b?
Rkl < =(% +32 +

== )M,
< 2l 3% T M

where My s a constant not depending on n.

Proof. We have

Zq Y
Un(Ti, k) = / / K(s,t,un—1(8,t),un—1(As, ), upn—1(s, put))dsdt,
o Jo

=0,q,n € N*,

e

1 = 0,p,

By using the cubature formula (3.1), we obtain (3.2).
For z,, < Arj; < Zm41, we consider

un—l(AIjvyk) = un—l(xma yk)7m = 077’ — 17 and for Yr < pyr < Yrg1, We consider
Un—1(zj, pyr) = tp—1(z;,yr), 7 =0,k — 1.

Here ) ,
TilYk L5 TiYk | Yk
Rni < —t 3 ZREN M- nai
| ) 7k3| — 12 (12 + Zk + k2) 2,n,i,k
and
L |82Kn‘ ‘62Kn| |62Kn|
nik =  Inax , ) ,
2R T i x o) || 052 7 ds0t "0t
where,

K, (s,t) == K(8,t,un—1(8,t), un—1(A8, ), un—1(s, ut)).
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We denote by up—1(s,t) = a,un—1(As,t) = 3, and wu,—1(s,ut) =+. So we obtain

0K, OK 0K Qu,_y OK Dun_ OK dun_y

—(s,? = — t A— A t);

PEn gy - DK 0K duny
§sz 0D ) = 0s2  0s0a  0Os
82K 8un_1 82K 8un_1
9505 05 OV T osy s (HOF
82K + 82K 8un_1 82K 8un_1
dsda a2 Os OadB  Os
0?°K Ou,_q Oun—1 OK 0%up_1q
+8a8’y Os (5, 1)) Os (s:%) da  0s?
0’K . 0*’K Oup_q
0s0p  0adB Os

(s, t)+

(As, t)+

(s,t) + A

+(

+A[ (s,t) + A

82K 6’(1,”_1

+ 0K 82 Up—1
0yo0B 0Os

(AS,t) + Aaiﬂ 852

Oup—1

Os

(s, ut)] (As, t)+

0’°K n ?K Oup_q
0s0y  Oadvy 0Os
82[( 8un_1
+
ov?  Os

82K 6un_1
0pB0~ Os
oK 82un_1

8un—l
(S?Nt)} s (S,/Jt) + a 92

(s, t) + A

+] (As, t) +

(s, pt).

Because -
a=up-1(s,t) = / / K(s,t,un—2(8,t), un—2(As, 1), up—_a(s, ut))dsdt,
o Jo

we have .
%:/ K(s,t,un—2(8,t), Un—2(AS, ), un—a(s, ut))dt,
0
0« tOK  OK Oupy_o 0K Ouy—o 0K Ouy—o
—_— = 4 — t A—— NS, t —_— t))dt
052 /0(38+8a b5 SO HAGE s At + o5 = (s ut)dt,
and 5 o2
o o
—| < Mb, | —| < Mb|1 + Mb(A+ 2)]|.
192 < 2,92 < Mb{1 + Mb(A +2)
It follows that
PKy, 2 2 2 2 2 2
| a2 | <M+ M+ AM*b+ M?b+ (M + M*b+ AM*°b+ M*b)Mb+

+MZb(1 4+ AMb 4 2Mb) + N(M + M?b + AM?b + M?*b) Mb+
FAM (Mb + AM?b? + 2M3b?) + (M + M?b + AM?b + M?b) Mb+
+M?b(1 + AMb + 2Mb) = M;.

Similarly as above we have

K, 0*K,
< M d < Ms.
Tz | = Mo and [ 550] < M
We choose
MO == maX{Ml,MQ,Mg}.
O
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