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Abstract

The aim of this paper is to present the wasp based computational model and many
applications of wasp based algorithms. A general frame for designing a wasp based algorithm,
starting from the classical problem of task allocation in a factory, is realized. The most
important characteristics of the wasp computational model are underlined and the way of
particularization of these characteristics for each problem is presented. Original applications
of wasp based algorithms in modeling multi agent systems, in solving optimization problems
and in building a reinforcement scheme for a stochastic learning system are presented.

1 Introduction

In the last ten years methods and models inspired from the behavior of social insects like ants
and wasps have gained increasing attention. Computational analogies to adaptive natural multi-
agent systems have served as inspiration for multi-agent optimization and control algorithms in
a variety of domains and contexts. Self-organization, direct and indirect interactions between
individuals are important characteristics of these natural multi-agent systems. Metaheuristics
inspired from nature represent an important approach to solve NP-difficult problems. It is
important to identify when a problem can be solved using these kind of methods. It is the goal
of this article to identify some type of problems which can be solved using wasp computational
based algorithms and to give a general frame for design these algorithms. The remainder of
this paper is organized as follows: in section 2 we present the wasp computational model and
the classical problem of task allocation in a factory. Starting from this problem we realize a
frame for design models based on wasp behavior and present many models for multi agents
systems, from different fields. In section 3 we present a reinforcement scheme for stochastic
learning automata, based on wasp behavior. In section 4 we present a wasp based algorithm for
improving the performances of a co-mutation operator. The co-mutation operator is used in a
hybrid approach for building multiple SVM kernels. Conclusions are presented in section 5.

2 Wasp behavior based algorithms in modeling multiagent

systems

The self organization model that takes place within a colony of wasps was used for solving large
complex problems, most of them with a dynamic character. In [18], Theraulaz et al. present
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In this paper we consider the following functional-integral equation with linear modifications
of the arguments:

u(x, y) =

Z x

0

Z y

0

K(s, t, u(s, t), u(λs, t), u(s, μt))dsdt, (x, y) ∈ [0, a] × [0, b],

where 0 < λ < 1, 0 < μ < 1, K ∈ C([0, a] × [0, b] × R
3).

Using the Picard operators’ technique we obtain existence and uniqueness results for the solution
of this equation.

By applying the successive approximations method and by using a cubature formula we give an
algorithm for the approximate solution.
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1 Introduction

Many problems from astronomy, chemistry, biology, economics, engineering lead to mathematical models
described by functional-integral equations.

The theory of functional-integral equations has been developed in the last fifty years. Many mono-
graphs appeared: Bellman and Cooke [3] (1963), Halanay [14] (1965), Elsgoltz and Norkin [9] (1971),
Bernfeld and Lakshmikantham [4] (1974), Hale [12] (1977), Lakshmikantham [19] (1984), Azbelev, Mak-
simov and Rahmatulina [1] (1991), Corduneanu [7] (1991), Gopalsamy [10] (1992), Hale and Verduyn
Lunel [13] (1993), Guo, Lakshmikantham and Liu [11] (1996) such as a large number of papers. We quote
here [2], [5], [15], [25], [31], [33].

A special class is represented by the integral equations with affine modifications of the arguments,
which can be with delay or with linear modifications of the arguments. The latter equations have been
developed in connection with the pantograph equation x′(t) = ax(λt) and in connection with problems
for the mentioned equation and for some of its generalizations (see [17], [18], [24], [32]).

Various Darboux-Ionescu problems for some equations with deviating arguments were presented by
I.A. Rus in [27]. These problems are equivalent to some functional -integral equations.

In this paper we consider the following functional-integral equation with linear modifications of the
arguments:

u(x, y) =

∫ x

0

∫ y

0

K(s, t, u(s, t), u(λs, t), u(s, μt))dsdt, (x, y) ∈ [0, a]× [0, b],
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where 0 < λ < 1, 0 < μ < 1, K ∈ C([0, a]× [0, b]× R
3).

Using the Picard operators’ technique (see I.A.Rus [29]), we obtain existence and uniqueness results
for the solution of this equation.

By applying the successive approximations method and by using a cubature formula (see D.V. Ionescu
[16]) we give an algorithm for the approximate solution.

2 Existence and uniqueness of the solution

Let (X, d) be a metric space and A : X → X an operator. We denote by
FA := {x ∈ X|A(x) = x} - the fixed point set of A;
A0 := 1X , A1 := A,An+1 := A ◦An, n ∈ N.

Definition 1 (Rus [29]) The operator A is a Picard operator if there exists x∗ ∈ X such that:

(i) FA = {x∗};
(ii) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 2 (Rus [29]) The operator A is a weakly Picard operator if the sequence (An(x0))n∈N

converges for all x0 ∈ X and its limit (which may depend on x0) is a fixed point of A.

Remark 1 If the operator A is a weakly Picard operator and FA = {x∗}, then A is a Picard operator.

Now, we consider the functional-integral equation:

u(x, y) =

∫ x

0

∫ y

0

K(s, t, u(s, t), u(λs, t), u(s, μt))dsdt, (x, y) ∈ [0, a]× [0, b], (2.1)

where 0 < λ < 1, 0 < μ < 1, K ∈ C([0, a]× [0, b]× R
3).

We consider the Banach space (C[0, a]× [0, b], ||.||B) , where

||u||B = max
(x,y)∈[0,a]×[0,b]

|u(x, y)|e−τ(x+y), τ ∈ R+,

and the operator A : (C[0, a]× [0, b], ||.||B) → (C[0, a]× [0, b], ||.||B) , defined by

A(u)(x, y) :=

∫ x

0

∫ y

0

K(s, t, u(s, t), u(λs, t), u(s, μt))dsdt.

We can write the equation (2.1) as a fixed point problem of the form: u = A(u).
We have

Theorem 1 We suppose that:
(i) K ∈ C([0, a]× [0, b]× R

3);
(ii) there exists L > 0 such that

|K(s, t, u1, v1, w1)−K(s, t, u2, v2, w2)| ≤ L(|u1 − u2|+ |v1 − v2|+ |w1 − w2|),

for all (s, t) ∈ [0, a]× [0, b] and all ui, vi, wi ∈ R, i = 1, 2.
Then the equation (2.1) has a unique solution in C([0, a]× [0, b]) and this solution can be obtained

by the succesive approximation method, starting from any u0 ∈ C([0, a]× [0, b]).
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Proof. We have

|A(u)(x, y)−A(v)(x, y)| ≤

≤ L(

∫ x

0

∫ y

0

(|u(s, t)− v(s, t)|e−τ(s+t)eτ(s+t)dsdt+

+

∫ x

0

∫ y

0

(|u(λs, t)− v(λs, t)|e−τ(λs+t)eτ(λs+t)dsdt+

+

∫ x

0

∫ y

0

(|u(s, μt)− v(s, μt)|e−τ(s+μt)eτ(s+μt)dsdt) ≤

≤ L

τ2
(1 +

1

λ2
+

1

μ2
)eτ(x+y)||u− v||B .

Therefore,

|A(u)(x, y)−A(v)(x, y)|e−τ(x+y) ≤ L

τ2
(1 +

1

λ2
+

1

μ2
)||u− v||B

for all (x, y) ∈ [0, a]× [0, b].
It follows that

||A(u)−A(v)||B ≤ L

τ2
(1 +

1

λ2
+

1

μ2
)||u− v||B ,

for all u, v ∈ C([0, a]× [0, b]).
By choosing τ ∈ R+ large enough, we have that A is a contraction. So A is a Picard operator. �

Now, we are looking for the solution of (2.1) in the following set

Y = {u ∈ C2([0, a]× [0, b], J)|||u||C ≤ R1, ||∂u

∂x
||C ≤ R2, ||∂u

∂y
||C ≤ R3,

||∂
2u

∂x2
||C ≤ R4, || ∂2u

∂x∂y
||C ≤ R5, ||∂

2u

∂y2
||C ≤ R6,

Ri > 0, i = 1, 6, J = [−r, r], r > 0}.

Here ||.||C is the Tchebyschev norm.

Consider the Banach space (Y, ||.||B) and the operator C : (Y, ||.||B) → (C2([0, a]× [0, b], J), ||.||B)
defined by

C(u)(x, y) :=

∫ x

0

∫ y

0

K(s, t, u(s, t), u(λs, t), u(s, μt))dsdt,

where K ∈ C2([0, a]× [0, b]× J3).
We denote

M = max
[0,a]×[0,b]×J3,|β|≤2

| ∂|β|K
∂sβ1∂tβ2∂uβ3∂vβ4∂wβ5

|.

Therefore

||C(u)(x, y)||C ≤ Mab, || ∂

∂x
C(u)(x, y)||C ≤ Mb, || ∂

∂y
C(u)(x, y)||C ≤ Ma,

|| ∂2

∂x2
C(u)(x, y)||C ≤ Mb[1 + R2(λ + 2)], || ∂2

∂y2
C(u)(x, y)||C ≤ Ma[1 + R3(λ + 2)],

|| ∂2

∂x∂y
C(u)(x, y)||C ≤ M.

We have
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Theorem 2 We suppose that
(i) K ∈ C2([0, a]× [0, b]× J3);
(ii) there exists L > 0 such that

|K(s, t, u1, v1, w1)−K(s, t, u2, v2, w2)| ≤ L(|u1 − u2|+ |v1 − v2|+ |w1 − w2|),

for all (s, t) ∈ [0, a]× [0, b] and all ui, vi, wi ∈ J, i = 1, 2.
(iii) Mab ≤ R1, Mb ≤ R2, Ma ≤ R3, Mb[1+R2(λ+2)] ≤ R4, M ≤ R5, Ma[1+R3(λ+2)] ≤ R6.
Then the functional-integral equation (2.1) has a unique solution in Y .

Proof. The equation (2.1) can be written as a fixed point problem u = C(u). The condition
(iii) insures us that Y is an invariant subset for the operator C. Similarly as above, by using (ii) we
obtain that C is a Picard operator. �

3 The approximate solution

We give an algorithm for the approximate solution of the equation (2.1).
We suppose that the conditions in Theorem 5 are satisfied.
Let u∗ ∈ Y be the unique solution of this equation. This solution can be obtained by the succesive

approximations method starting from any u0 ∈ Y. Consider u0(x, y) = u0, where u0 ∈ R. Then

u1(x, y) :=

∫ x

0

∫ y

0

K(s, t, u0, u0, u0)dsdt, (x, y) ∈ [0, a]× [0, b];

u2(x, y) :=

∫ x

0

∫ y

0

K(s, t, u1(s, t), u1(λs, t), u1(s, μt))dsdt, (x, y) ∈ [0, a]× [0, b];

.......................................................

un(x, y) : =

∫ x

0

∫ y

0

K(s, t, un−1(s, t), un−1(λs, t), un−1(s, μt))dsdt,

(x, y) ∈ [0, a]× [0, b];

..............................................................

We use the cubature formula (see D.V. Ionescu [16])

∫ a

0

∫ b

0

f(x, y)dxdy =
ba

2pq
[

p−1∑
j=0

f(xj , 0) +

p∑
j=1

f(xj , b) +

q−1∑
l=1

f(0, yl) +

+

q−1∑
l=1

f(a, yl) + 2

p−1∑
j=1

q−1∑
l=1

f(xj , yl)] + Rf . (3.1)

An upper bound for the remainder Rf is given by

|Rf | ≤ ab

12
(
a2

p2
+ 3

ab

pq
+

b2

q2
)M2,

where

M2 = max
[0,a]×[0,b]

{
|∂

2f

∂x2
|, | ∂2f

∂x∂y
|, |∂

2f

∂y2
|
}

.
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Here

0 < x1 < ... < xj−1 < xj < ... < xp−1 < a,

0 < y1 < ... < yl−1 < yl < ... < yq−1 < b,

and xj = a
p j, j = 1, p, yl = b

q l, l = 1, q.
We have

Theorem 3 We suppose that all the conditions in Theorem 5 are satisfied. The values of the succesive
approximations sequence on the knots (xi, yk) ∈ [0, a]× [0, b], i = 0, p, k = 0, q are

un(xi, yk) =
ba

2pq
[
i−1∑
j=0

K(xj , 0, un−1(xj , 0), un−1(λxj , 0), un−1(xj , 0)) +

+
i∑

j=1

K(xj , yk, un−1(xj , yk), un−1(λxj , yk), un−1(xj , μyk)) +

+
k−1∑
l=1

K(0, yl, un−1(0, yl), un−1(0, yl), un−1(0, μyl)) +

+

k−1∑
l=1

K(a, yl, un−1(a, yl), un−1(λa, yl), un−1(a, μyl)) +

+2

i−1∑
j=1

k−1∑
l=1

K(xj , yl, un−1(xj , yl), un−1(λxj , yl), un−1(xj , μyl))] +

+Rn,i,k, (3.2)

where i = 1, p, k = 1, q, n ∈ N
∗, and

|Rn,i,k| ≤ ab

12
(
a2

i2
+ 3

ab

ik
+

b2

k2
)M0,

where M0 is a constant not depending on n.

Proof. We have

un(xi, yk) =

∫ xi

0

∫ yk

0

K(s, t, un−1(s, t), un−1(λs, t), un−1(s, μt))dsdt,

i = 0, p, k = 0, q, n ∈ N
∗.

By using the cubature formula (3.1), we obtain (3.2).
For xm ≤ λxj < xm+1, we consider
un−1(λxj , yk) := un−1(xm, yk),m = 0, i− 1, and for yr ≤ μyl < yr+1, we consider
un−1(xj , μyl) := un−1(xj , yr), r = 0, k − 1.
Here

|Rn,i,k| ≤ xiyk

12
(
x2

i

i2
+ 3

xiyk

ik
+

y2
k

k2
)M2,n,i,k

and

M2,n,i,k = max
[0,xi]×[0,yk]

{
|∂

2Kn

∂s2
|, |∂

2Kn

∂s∂t
|, |∂

2Kn

∂t2
|
}

,

where,

Kn(s, t) := K(s, t, un−1(s, t), un−1(λs, t), un−1(s, μt)).
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We denote by un−1(s, t) = α, un−1(λs, t) = β, and un−1(s, μt) = γ. So we obtain

∂Kn

∂s
(s, t, α, β, γ) =

∂K

∂s
+

∂K

∂α

∂un−1

∂s
(s, t) + λ

∂K

∂β

∂un−1

∂s
(λs, t) +

∂K

∂γ

∂un−1

∂s
(s, μt);

∂2Kn

∂s2
(s, t, α, β, γ) =

∂2K

∂s2
+

∂2K

∂s∂α

∂un−1

∂s
(s, t)+

+λ
∂2K

∂s∂β

∂un−1

∂s
(λs, t) +

∂2K

∂s∂γ

∂un−1

∂s
(s, μt)+

+(
∂2K

∂s∂α
+

∂2K

∂α2

∂un−1

∂s
(s, t) + λ

∂2K

∂α∂β

∂un−1

∂s
(λs, t)+

+
∂2K

∂α∂γ

∂un−1

∂s
(s, μt))

∂un−1

∂s
(s, t) +

∂K

∂α

∂2un−1

∂s2
(s, t)+

+λ[
∂2K

∂s∂β
+

∂2K

∂α∂β

∂un−1

∂s
(s, t) + λ

∂2K

∂β2

∂un−1

∂s
(λs, t)+

+
∂2K

∂γ∂β

∂un−1

∂s
(s, μt)]

∂un−1

∂s
(λs, t) + λ

∂K

∂β

∂2un−1

∂s2
(λs, t)+

+[
∂2K

∂s∂γ
+

∂2K

∂α∂γ

∂un−1

∂s
(s, t) + λ

∂2K

∂β∂γ

∂un−1

∂s
(λs, t) +

+
∂2K

∂γ2

∂un−1

∂s
(s, μt)]

∂un−1

∂s
(s, μt) +

∂K

∂γ

∂2un−1

∂s2
(s, μt).

Because

α = un−1(s, t) =

∫ s

0

∫ t

0

K(s, t, un−2(s, t), un−2(λs, t), un−2(s, μt))dsdt,

we have
∂α

∂s
=

∫ t

0

K(s, t, un−2(s, t), un−2(λs, t), un−2(s, μt))dt,

∂2α

∂s2
=

∫ t

0

(
∂K

∂s
+

∂K

∂α

∂un−2

∂s
(s, t) + λ

∂K

∂β

∂un−2

∂s
(λs, t) +

∂K

∂γ

∂un−2

∂s
(s, μt))dt,

and

|∂α

∂s
| ≤Mb, |∂

2α

∂s2
| ≤Mb[1 + Mb(λ + 2)].

It follows that

|∂
2Kn

∂s2
| ≤M + M2b + λM2b + M2b + (M + M2b + λM2b + M2b)Mb+

+M2b(1 + λMb + 2Mb) + λ(M + M2b + λM2b + M2b)Mb+

+λM(Mb + λM2b2 + 2M2b2) + (M + M2b + λM2b + M2b)Mb+

+M2b(1 + λMb + 2Mb) = M1.

Similarly as above we have

|∂
2Kn

∂t2
| ≤M2 and |∂

2Kn

∂s∂t
| ≤M3.

We choose
M0 = max{M1,M2,M3}.

�
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