
Second International Conference

Modelling and Development of Intelligent Systems

Sibiu - Romania, September 29 - October 02, 2011

“Least Significant Bit” method in steganography

Gabriel TUDORIC�, Paul STÂNEA, Daniel HUNYADI

Abstract

The purpose of this paper is to present the benefits of steganography and emphasize popular
ways it can be applied to. We will focus on a digital steganography technique, using Bitmap files
as carrier files for our hidden messages, thus hiding it in plain sight. Even though the picture can
be seen by others, only the sender and the intended recipient will actually be able to get the
messages.
 Finally, we built an application using C# capable of applying this steganography technique,
and allowing the user to embed hidden messages in 24 bit Bitmap files. Additionally, we
implemented a chat-like environment using 24 bit Bitmap files to send the hidden data.

1. Introduction

We built our steganography application on the .NET Framework, using C# and it was

designed to allow any user to embed hidden messages into 24 bit Bitmap files.
Using a substitution method called Least Significant Bit, this feature was made possible. This

substitution method has a drawback though; namely the amount of text that can be hidden is
limited to the size of the bitmap.

Basically, our application loads any 24 bit bitmap and using the Least Significant Bit method,
it calculates the maximum number of bits (in characters) one can embed into the file. The
substitution method replaces the last bit of every byte in the bitmap file with the bits from our
binary transformed message. Clearly, our message must not exceed the maximum number of bits
available for this process. Thus, we built a limiter which provides graphical feedback to the user.

After the message has been entered, for security reasons, the user must enter a password to
protect the file for the decoding process.

After the password has been set, the application saves the new bitmap file with the embedded
message and password and the new file can be sent to the intended recipient. The differences
between the original file and the one with the embedded message are so small, that no one will
notice unless they can compare it to the original.

In most cases, depending on the bitmap size and hidden message length, there were no visual
and/or size differences between the two.

For the decoding part, the recipient will load the file into the application, fill in the password
field, and the hidden message will be revealed.

208

�

�
Gabriel Tudoric�, Paul Stânea, Daniel Hunyadi

��

��

�

Since there are other applications capable of doing the same thing, we thought of a way to
significantly improve ours. While most steganography applications use one technique to embed
messages, we implemented another one, namely the generation technique.

Two out of three techniques have some serious drawbacks!
More precisely, the insertion method adds harmless bits to an executable file for example,

increasing the carrier file size depending on the embedded message length, thus arousing
suspicion.

The big drawback of the substitution method is that the maximum available size for our
hidden message is determined by the size of our bitmap file, which can cause problems.

Since the two above mentioned methods are not 100% trustworthy, we used a third one, the
generation method, which generates a large enough image to carry the entered message. This
method requires the message to be entered first, then it calculates the size of the text in bits and
finally generates a large enough 24 bit bitmap file capable of embedding the message. The
resulting bitmap file size will be directly dependent to the message length and its width and height
are chosen so that the resulting file is large enough to withhold the message and not too much
larger then it is needed. Since this is directly linked to the message length, we won’t have 2
images of the same width or height.

Furthermore, we added another great feature to our application using the generation method.
We created a chat-like environment where two users can chat using secure hidden messages found
in 24 bit bitmap files using a FTP server. Once the messages are created, a picture carrying the
message will be generated and uploaded to a FTP server, where the other instance of the
application scans the server for new images.

When found, it downloads it locally, loads it, decodes it and displays the message. After the
message is displayed, both the remote and local files are deleted. We did not protect the images
with a password because we wanted to speed up the whole process and make it as close as a chat-
like application as we could. And since the carrier files will stay for just about a few seconds on
the server, the file does not present a security risk.

The main goal we managed to achieve here is that the whole conversation, viewed from
outside, is camouflaged into a trivial file upload on a FTP Server, which is great!

2. Steganography

Steganography is the art and science of writing hidden messages in such a way that no one,

apart from the sender and the intended recipient, suspects the existence of the message. It’s a form
of security through obscurity.

The main advantage of using steganography over cryptography alone, is that the messages do
not attract attention on themselves, furthermore the messages are double protected. [1][2][3]

Diagram (1) provides a very generic description of the pieces of the steganographic process:

(1)

209

�

�
“Least Significant Bit” method in steganography

�

�

Cover_medium is the file in which we will hide the hidden_data (the carrier file), which may
also be encrypted using the stego_key. The resultant file is the stego_medium, which will be the
same file type as the cover_medium and it will be perfectly usable. The cover_medium are
typically image or sound files. Our application will focus on image files.[2][3]

History confirms what we already know: the best place to hide messages is in plain sight.
An example of ancient steganography use is that of Histiaeus, who shaved the head of his most
trusted slave and tattooed a message on it. After his hair had grown, the message was hidden. His
purpose was to revolt against the Persians. [1][2]

Another useful purpose of steganography is the so-called digital watermarking. A watermark,
historically, is the replication of an image, logo, or text on paper stock so that the source of the
document can be at least partially authenticated. A digital watermark can accomplish the same
function.

A graphic artist, for example, might post on a website sample images with an embedded
signature (known only by him), so that he can later prove his ownership in case others attempt to
portray his work as their own. [3]

2.1Techniques

2.2 Physical steganography

Steganography has been and it is used today in many forms. The ways of hiding data
nowadays are endless, but the most popular include:[4][5]

� Messages tattooed/written on messenger’s body;
� Messages written in secret inks;
� Messages written below the postage stamps on envelopes.

2.2.1 Digital steganography

Steganography evolved in 1985 with the advent of the personal computer. Since then, there
have been built over 800 steganography applications recognized by official institutions around the
world. Some common digital steganography methods are: [4][5]

� Hiding messages in the lowest bits of noisy images or sound files;
� Hiding data in encrypted data or within random data;
� Adding harmless bits to executable files;
� Embedding photos in video material;

2.2.2 Network steganography

Network steganography uses communication protocols’ control elements and their basic
functionality, making the whole process even harder to detect or remove. An example of network
steganography method is Steganophony - the concealment of messages in Voice-over-IP
conversations, e.g. intentionally sending corrupted packets that the receiver would ignore by
default; [4][5]

2.2.3 Printed steganography

Nowadays much of the steganography employed today is quite high-tech, but steganography’s
goal is to mask the existence of a message. A message can be concealed by traditional means and
produce a ciphertext.

210

�

�
Gabriel Tudoric�, Paul Stânea, Daniel Hunyadi

��

��

�

A popular and almost obvious method is called a null cipher. In this type of steganography,
one would decode the hidden message by taking the first or other fixed letter from each word and
create new words. Other forms include deliberately making mistakes, using different fonts or
other hard to notice symbols. [4][5]

Consider this cablegram that might have been sent by a journalist/spy from the U.S. to Europe
during World War I:

PRESIDENT'S EMBARGO RULING SHOULD HAVE IMMEDIATE NOTICE. GRAVE
SITUATION AFFECTING INTERNATIONAL LAW. STATEMENT FORESHADOWS RUIN OF
MANY NEUTRALS. YELLOW JOURNALS UNIFYING NATIONAL EXCITEMENT IMMENSELY.

The first letters of each word form the character string: PERSHINGSAILSFROMNYJUNEI. A

little imagination and some spaces yields the real message: PERSHING SAILS FROM NY JUNE I.

3. Algorithms and Techniques
There are three different techniques you can use to hide information in a cover file:

a) Injection (or insertion);
b) Substitution
c) Generation

3.1Injection or insertion

Using this technique, the data is stored in section of a file that is ignored by the application
that processes it. For example in unused header bits or adding harmless bytes to a file leaving it
perfectly usable.

The more data you add, the larger the file gets, and this can raise suspicion. This is the main
drawback of this method.[1][4]

3.2 Substitution

Using this approach, the least significant bits of information are replaced with desired data,
which will be reproduced on decoding.

The main advantage of this method is that the file size does not change, but the file can be
affected by quality degradation, which in some cases may corrupt files. Another flaw is that the
available amount of data is limited by the number of insignificant bits in the cover file. [1][4]

3.3 Generation

Unlike injection and substitution, this technique doesn't require an existing file, it generates it
just to embed the message, which is better than the other two mentioned methods because it’s not
being attached to another file to suspiciously increase the file size, it has no limitation and the
result is an original file and therefore immune to comparison tests. [1][4]

211

�

�
“Least Significant Bit” method in steganography

�

�

4. The Least Significant Bit (LSB) method
The Least Significant Bit (LSB) method is the most common substitution technique, which

basically replaces the least significant bytes in a file to conceal data, which is extracted at the
decoding process. It’s especially effective on lossless image files, such as 24 bit Bitmap files.

The method takes the binary representation of any form of data and overwrites the last bit of
every byte in an image.

As an example, we will take a 3x1 pixel 24 bit bitmap, each pixel color is represented on one
byte so our picture bitmap will have a total of 9 bytes. We have the following RGB encoding:

11010101 10001101 01001001

11010110 10001111 01001010

11011111 10010000 01001011

Now suppose we want hide the following 9 bits of data: 101101101. If we overlay these 9 bits
over the original file using the LSB method, we end up with the following new RGB encoding,
which visually is not too different. The bits in bold have been changed.

11010101 10001100 01001001

11010111 10001110 01001011

11011111 10010000 01001011

We managed to hide 9 bits of information by only changing 4 bits or about 50% of the lest

significant bits.[2]

Similar methods can be applied to lower color depth image files, but the changes would be too
dramatic and therefore obvious. On the other hand, grayscale images provide an excellent cover
file for the LSB method.

 It is worth mentioning that steganalysis is the art of detecting and breaking steganography. A
form o analysis is to carefully examine the color palette of an image, which very often has a
unique binary encoding for each individual color. If steganography is used, the same color will
end up having more binary encodings, which would suggest the use of steganography in the
specific file.

But if we wanted to check for hidden information in images, which files should we analyze?
Suppose I decide to send a message hidden in a picture that I will post on a website, where others
can see it, but only certain people know that it contains hidden information. I can also post more
images and only some of them would have hidden data so the potential stegananalyst would get
confused. [2][5]

The quantity of potential cover files make steganalysis a Herculean task, and we will exploit
this very spot of steganalysis in our application.

212

�

�
Gabriel Tudoric�, Paul Stânea, Daniel Hunyadi

��

��

�

5. MessageHider Application
MessageHider is a steganography application we developed using .NET Framework and C#.

Compared with other software products that use only one steganography technique, our
application uses two: substitution and generation. Our application has two modes: normal and chat
mode. In the following, we will present the application in detail.

The Graphic Interface is basic, and allows the user to enter the two modes: normal and chat
mode.

5.1 Normal mode

The normal mode, provides the basic functionality, using a substitution algorithm, more
precisely the Least Significant Bit method. We will use 24 bit bitmaps as stego files, because of
their lossless compression. Normal mode provides features for encoding and decoding hidden
messages.

5.1.1 Encoding

To encode a hidden message, the user needs to first select the source file (24 bit bitmap). Once
the bitmap is loaded, our application will estimate the maximum number of characters the user
can hide in the selected file. As we have seen, the Least Significant Bit method, replaces the last
bit of every byte in the file, with the bits for our hidden message. To get the maximum number of
characters a user can hide we will use the following formula (ImageWith, ImageHeight are
expressed in pixels):

 (3)

Main screen (2)

213

�

�
“Least Significant Bit” method in steganography

�

�

In other words, for a 1024x768 bmp image we will have 147459 characters.

When a bitmap is being loaded, the user will have a visual feedback for the maximum
characters available as the message is being typed and will also limit the maximum number of
characters he enters to the maximum available characters calculated before minus 32. The 32
characters we subtracted are reserved for the password, which can be by up to 30 characters, the
two characters left being used as a delimiter from the original message on which the password
will be concatenated.

After the message was entered and the password set, the Least Significant method will be
called and the stego file will be generated.

The form the user will have to fill in has the following fields:
� Select picture – the path to the carrier image in which we will hide our message. The

image will be a 24 bit bitmap;
� Select output picture – the path to the output picture;
� Password – the password required for the decoding of the message;
� Message – the message we want to hide;

We also provided a drag and drop box so that the user can drag the bitmap in the box and the

form will autocomplete its path. We can also load text from a file to speed up the process.
We actually managed to hide our entire article (without the images) in a single 1024x768

standard Windows 7 image which we converted to BMP format. Our article used only 18% of the
available characters we could hide in the picture, having another 121,953 characters left.

We would also like to point out the fact that the size of the image did not change, both the
orginal and the stego file had 2,359,352 bytes. Also, from a visual perspective, both files are
identical.

(4)

Encoding 1024x768 bmp (5)

214

�

�
Gabriel Tudoric�, Paul Stânea, Daniel Hunyadi

��

��

�

Last, but not least we added a bitmap generation module so that the user could generate a
large enough bitmap to withhold the entered message. The resulting bitmap will be black and
white with lots of noise.

The whole process can be visualized using diagram (8):

(8)

Encoding with generated b&w noisy bitmap (7)

Image comparison (6)

215

�

�
“Least Significant Bit” method in steganography

�

�

We can conclude that diagram (8), is the extended version of the diagram (1) we presented
earlier.

5.1.2 Decoding

Firstly, the user will load the stego file into the application. Once this is done, the Least
Significant Bit method will extract the last bit from every byte of the stego file and thus recreate
the original binary message. After a conversion from byte to string, we get the original message.
The message also has the password concatenated and delimited by the || characters.

The password is extracted from the string and stored for it to be checked in the next step,
where the user is required to fill in the password field. If the password is correct, the original
message sent will be revealed to the user.

The decoding form has the following fields:
� Select picture – the path to the bitmap picture we want to extract the message from, which, as

before, it can be obtained if the user drags and drops the file in the drop box;
� Password – the password we protected our message with;
� Your message – the area where the original message will be revealed if the password is

correct.

The whole process can be visualized using diagram (10):

As diagram (10) shows, the decoding process is the inverse of the encoding process.
(10)

Decoding (9)

216

�

�
Gabriel Tudoric�, Paul Stânea, Daniel Hunyadi

��

��

�

5.2Chat mode

Chat mode uses the generation steganography technique. Basically, the user first types the
message he wishes to hide and a large enough bitmap capable of embedding the message will be
generated as a stegofile. The message will be protected by a generic password. Once the message
was embedded, the stegofile will be named using a convention based on the nickname the user
chose (which he previously filled in) and a timestamp. Then, the stegofile will be uploaded to an
FTP server, using the credentials filled in by the user from the form, and the message he wrote
will be displayed in the textfield.

The other user will connect on the same FTP server and the application will scan for the
existing files that do not start with the current user’s nickname based on the convention we talked
about earlier. If found, the bitmaps will be downloaded from the FTP server, decoded using the
same generic password and the message will be displayed in the textfield along with the other
user’s nickname. The local bitmaps and the ones on the FTP server will be erased as soon as the
the bitamp is decoded.

The main advantage is that the whole chat can be seen as a trivial uploading and deleting
procedures.

Once in chat mode, the user will have to first assign a nickname which will be used to
differentiate the message sender. Once the user fills in the nickname field, he will fill in the
credentials in order to connect to the FTP Server and lastly press the Connect button. A visual
feedback will notify the user about the connection status.

Once connected to the FTP Server, the user can begin to exchange messages with the other
user. Using the message textbox, the user can type in the message he wishes to send. When he
presses the send button, a couple of processes are initiating.

Firstly, we need to generate a picture large enough for our message to fit in. The width of the
image will be generated by a random number between 100-300 pixels, all we have to calculate
now is the height. Based on (3), we conclude that the ImageHeight is:

(12)

Secure chat mode (11)

217

�

�
“Least Significant Bit” method in steganography

�

�

Now that we have the ImageWidth and ImageHeight, we can generate the carrier image. We
just added noise to the image in order not to leave it blank, but random graphics can be generated
or even fractals. Actually we have this in mind for future developments.

Once the image is generated, we apply the Least Significant Bit method, previously described
in the normal mode – encoding part. After the message is embedded, we upload the bitmap file to
the FTP Server and rename it as [nickname--unixTimestamp.bmp].

By using this naming convention we can easily determine the message sender, and sort the
files/messages in chronological order because of the unixTimestamp. Once the image has been
uploaded, it is deleted from the local path.

The message we embedded in the file will also be displayed in the chat window, having the
user’s nickname as a prefix.

Once the file is decoded, both the remote and local files are deleted. When the user closes the
chat mode, the FTP connection will close as well.

Secure chat mode – Bob (14)

Secure chat mode – Alice (15)

Bob--1316905935.bmp – zoomed in 291x1 pixel bitmap generated for the Hi, Alice!
message sent by Bob (13)

218

�

�
Gabriel Tudoric�, Paul Stânea, Daniel Hunyadi

��

��

�

Visually the whole process can be visualized using diagram (16):

As diagram (16) shows, our application in chat mode is similar to a native chat application,
only instead of using sockets and a chat server, our application uploads stego files to a FTP
server.

6. Conclusion
The application provides a secure way to communicate with one or more users in real time

through chat mode or in normal mode where the stego files can be sent via mail or uploaded on a
website, thus hiding the message in plain sight which goes right to the heart of steganography’s
purpose.

Of course, there is always room for improvements. For future implementations we thought of
encrypting the message using strong cryptography algorithms and embed the ciphertext in the
bmp files, thus creating a double protection. Another feature we thought of, was to implement
methods capable of embedding the messages in other file types (other image types or even sound
or video files).

7. References
[1] http://en.wikipedia.org/wiki/Steganography
[2] http://www.garykessler.net/library/steganography.html
[3] http://www.garykessler.net/library/fsc_stego.html
[4] http://www.infosyssec.com/infosyssec/Steganography/techniques.htm
[5] http://en.wikipedia.org/wiki/Least_significant_bit
[6] http://en.wikipedia.org/wiki/BMP_file_format
[7] http://www.fastgraph.com/help/bmp_header_format.html

Gabriel TUDORIC�
“Lucian Blaga” University of Sibiu
Faculty of Sciences
Sibiu, Dr. Ioan Ra iu St. No. 5 - 7
ROMÂNIA
E-mail: office@eyenetworks.ro

Paul STÂNEA
“Lucian Blaga” University of Sibiu
Faculty of Sciences
Sibiu, Dr. Ioan Ra iu St. No. 5 - 7
ROMÂNIA
E-mail: psb77black@yahoo.com

Daniel HUNYADI
“Lucian Blaga” University of Sibiu
Faculty of Sciences
Sibiu, Dr. Ioan Ra iu St. No. 5 - 7
ROMÂNIA
E-mail: daniel.hunyadi@ulbsibiu.ro

 (16)

219

