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Abstract

Defined in a general way resources are meant to enable the functioning of complex systems like
human societies or biological and techno-economical networks. Apart from the primary inputs to
such systems like raw materials, energy, raw information and finance there are a series of embedded
or derived complex resources like housing, education and jobs which provide pivotal services. The
latter may be often characterized by knowledge production and, on a more fundamental level, by
time delays in otherwise quasi-continuously acting dynamical environment. We propose to analyze
the role of time delays in order to better understand the dynamics of unemployment and job cre-
ation. Temporary and permanent jobs are highly context and delay-sensitive replenishable resources.
Misunderstanding their dynamics can cause high and long lasting societal costs.

1 Introduction
In biology and in ecology many good examples of the fundamental role of time delays in otherwise con-
tinuous processes are found. A classical example is the Mackey-Glass delay equation which dates back
to 1977 (see Lichtenberg and Lieberman [7] detailed explanations) and which describes the regeneration
of (blood) cells. Being a scalar equation of type dx(t)

dt = ax(t−τ)
1+[x(t−τ)]c−bx(t), with a, b, c > 0 and x([−τ, 0])

given, its dynamics is “harmless” for small τ but exhibits chaotic fluctuations for large enough τ > 0
and thus offers an explanation for hard-to-control malfunctioning of biological regeneration processes.
Knowledge about “too large delays” is also vital in the context of other replenishable complex resources,
as shown by Nikolopoulos and Tzanetis [3] in a paper on the impact on loss of shelter due to catastrophic
events like earthquakes. Other intriguing examples are discussed in the models of Misra and Singh ([1],
[2]), where the replenishable resource refers to unemployment (job losses) and job creation. As a rule,
different models may express some plausible valid facet of a complex empirical process like job loss and
job creation. In the sequel we use computational approaches (symbolic, numerical) in order to support
the process of domain knowledge extraction.

2 Some dynamic equations of labor and employment
The models of Misra and Singh ([1], [2]) describe the process of labor market fluctuations by a nonlinear
dynamical model in four variables related to employment to be described in the sequel. It is based on the
aforementioned model of Nikolopoulos and Tzanetis [3] which treats housing replenishment based on
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past information, the time delay of collecting reliable information being substantial. Note that when it
comes to describe ways of measuring the labor markets, alternative classifications of variable or factors
come to mind and they may pose some indeterminacies from the onset. This refers to e.g. what type of
people to include into the class of the “unemployed”, how to delimit different term structures of unem-
ployment, etc.. In order to facilitate a model-based analysis of the employment process (in a developed
economy) one may use a set of variables xi(t), i = 1, ..., 4, defined at each moment in time t(t ≥ 0)
(this collection of variables may be further refined):

• x1(t) ≥ 0, the number of unemployed (including out of labor, part time ?),

• x2(t) ≥ 0, the number of persons with temporary employment,

• x3(t) ≥ 0, the number of persons with permanent employment, and

• x4(t), the vacancies or the newly created jobs (these may also be destroyed?)

During time evolution, We assume that a proportion of the unemployed may become permanently
employed, and others temporarily employed. Furthermore some of the temporarily employed may be-
come permanently employed. Finally, a part of both, the temporarily and permanently employed may
lose their jobs and become unemployed. For simplicity, we also assume that all unemployed can initially
cope with the tasks of any job on offer, but in time they are loosing skills owing to attrition. Also, we
assume that there should be no barriers to job acceptance imposed by reduced individual mobility. Fur-
thermore, as a crude approximation, a constant rate of growth of unemployment is assumed (owing for
instance to the continuous action of labor saving technical progress). Migration rate of unemployed is
assumed to be proportional to their number and the total number of vacant jobs which can be created are
bounded and constant.

The time evolution of the umber of unemployed x1(t) is defined to depend on the following: (1) the
rate of change of the number of the unemployed which will become permanently employed is propor-
tional to x1(t) and to the number of permanent jobs a2 +x4(t)−x3(t), where a2 > 0 is the total number
of such permanent jobs available, and, (2) allowing for the transition from unemployment to temporary
employment, their latter rate of change is proportional to x1(t) and to the number of temporary jobs
available and vacant a4 + x4(t)− x2(t), where a4 > 0 is the total number of temporary jobs available in
the system. Hence, we have

dx1(t)

dt
= a− a1x1(t)(a2 + x4(t)− x3(t))−
−a3x1(t)(a4 + x4(t)− x2(t))− a5x1(t) + a6x2(t) + a7x3(t),

with initial condition x1(0) > 0.

(1)

The coefficients a1, a3 > 0 are for scaling the single described effects and a5, a6, a7 > 0 stand for
migration rate of the unemployed, the transition rate of permanently and temporarily employed into the
state of unemployment, respectively.

Turning now to the evolution of the temporarily employed persons, x3(t), we consider that the rate
of change of unemployed into permanently employed will be proportional to x1(t) and to the number of
vacant permanent jobs a4 + x4(t) − x2(t) (with a4 > 0 being the number of vacant jobs permanently
available). Again, the rate of transformation from being unemployed into temporarily employed is pro-
portional to x1(t) and the number of temporary job vacancies a2 + x4(t) − x3(t), where a2 > 0 is the
number of total temporary job vacancies. Hence the differential equation for x2(t) reads:
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dx2(t)

dt
= a3x1(t)(a4 + x4(t)− x2(t))−

−a8x2(t)(a2 + x4(t)− x3(t))− a9x2(t)− a6x2(t),

with initial condition x2(0) > 0.

(2)

Coefficient a8 > 0 is a constant of proportionality and the constant decay rate a9 > 0 describes the
exit of temporarily employed persons from the system (due to death, old age, or migration, see a similar
argument for a10 > 0 below).

The rate of change of the number of unemployed which will find a permanent job is proportional to
a1x1(t)+a8x2(t) and the number of vacant job positions for permanent employment is a4+x4(t)−x3(t).
Hence, the rate of change of the permanently employed x3(t) is given by the following differential
equation:

dx3(t)

dt
= (a1x1(t) + a8x2(t))(a4 + x4(t)− x3(t)) + a10x3(t)− a7x3(t),

with initial condition x3(0) > 0.

(3)

where the constant decay rate a10 > 0 describes the exit of permanently employed persons from
the system (due to death, old age, or migration). Finally, the time evolution of newly created jobs is
proportional to the time-delayed information about the unemployed in existence at t− τ :

dx4(t)

dt
= a12x1(t− τ)− a13x4(t),

with x1(θ) = V (θ), −τ ≤ θ ≤ 0, and with initial condition x4(0) > 0.

(4)

Note that V : R → R is a differentiable function which has to be supplied by the modeler. The
coefficients a12, a13 > 0 are the rate of new job creation and the decay rate of permanent unemployment,
respectively. The latter may be due to insufficient state funding or labor saving technical progress.

3 Equilibrium and bifurcation analysis

In order to analyze the dynamics of a higher dimensional system which escapes intuition some sym-
bolic term reduction and manipulation are in order. The less consuming part (subsection 4) relates to
determining the stationary points 0 = fi(x10, x20, x30, x40), i = 1, ..., 4, which allow for linearizing and
simplifying around these points and upon which the qualitative dynamics of the system (stable orbits,
oscillations) may be characterized. Determining the fate of the dynamics as a function of the time delay
τ > 0 which changes the eigenvalue spectrum of the linearized system is a more complicated symbolic
procedure just touched upon in subsection 3.2 and which is based on Normal Form Theory of bifurcation
analysis (for a recent account on theory and computational approaches consult Han and Yu [6]).

3.1 A unique equilibrium point in feasible region of the state space

Equilibrium or stationary points of the dynamic system 1–4 are solutions of the following system of
algebraic (low order multinomial) equations:
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a− a1x1(a2 + x4 − x3)− a3x1(a4 + x4 − x2)− a5x1 + a6x2 + a7x3 = 0,
a3x1(a4 + x4 − x2)− a8x2(a2 + x4 − x3)− a9x2 − a6x2 = 0,

(a1x1 + a8x2)(a4 + x4 − x3) + a10x3 − a7x3 = 0,
a12x1 − a13x4 = 0.

(5)

Upon adding the equations of 5 we arrive at

a− a5x1 − a9x2 − a10x3 = 0. (6)

From the 4th equation of 5 results
x4 =

a12x1
a13

, (7)

and from equation 6 results

x3 =
a− a5x1 − a9x2

a10
. (8)

By replacing x3 and x4 in the second and third equations of system 5 leads finally to a reduced system
of two equations in two variables:

f3(x1, x2) = (a1x1 + a8x2)(a2a13a10 + a12a10x1 − a13(a− a5x1 − a9x2))−
a13(a10 + a7)(a− a5x1 − a9x2) = 0,

f4(x1, x2) = a10a3x1(a4a13 + a12x1 − a13x2)−
a8x2(a2a13a10 + a12a10x1 − a13(a− a5x1 − a9x2))−
a10a13(a6 + a9)x2 = 0.

(9)

The two-dimensional system of equations 9 admits a positive solution x10, x20, which is depicted
in figure 1 as the intersection of the graphs of f3(x1, x2) = 0 and f4(x1, x2) = 0. For a given set of
parameter values

a = 65000 a1 = 0.00004 a2 = 25000 a3 = 0.0003 a4 = 30000 a5 = 2
a6 = 0.0009 a7 = 0.0008 a8 = 0.0001 a9 = 0.9 a10 = 0.9 a12 = 0.9 a13 = 0.2

we obtain the equilibrium point (x10, x20) = (5520, 23370) and by using these values in 8 and 7 we
obtain the third and forth coordinates of the equilibrium point, namely (x30, x40) = (36585.55, 24840).
It can be proven that this equilibrium point is unique for positive values of x1 and x2. However, this
should be regarded as a simple case without claiming genericity for this to happen in most models of
labor dynamics (indeed, it is not very difficult to state much simpler, empirically relevant nonlinear
models with multiple equilibria, see e.g. Guckenheimer & Holmes [4]).

For obtaining information concerning the nature of the equilibrium point we compute the charac-
teristic equation (eigenvalue equation) of the dynamical system 1–4 linearized at the equilibrium point.
Using the (numerically) instantiated parameter values from above this finally results for the special case
of τ = 0 in the equation

((λ+11.97)(λ+2.98)(λ+3.45)−96.36−18.85λ)(λ+.2)−11.97+1.68(λ+2.98)(λ+3.46)+.5λ = 0

The solutions of this equation or the eigenvalues are (numerical values are rounded for convenience)

λ1 ; = ;−13.37, λ2 ; = ;−4.41, λ3 ; = −0.41− 0.11i, λ4 ; = ;−0.41 + 0.11i

The eigenvalues have negative real parts which, in the context of our dynamical system, implies that the
equilibrium point (x10, x20, x30, x40) is asymptotically stable, i.e. the equilibrium point is attracting
any orbit starting in its vicinity.
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Figure 1: Graphs of the functions f3(x1, x2) = 0 (red in colored display style) and f4(x1, x2) = 0 (black
in colored display style) intersect at a unique point which is the (x1, x2)-coordinate of the equilibrium.

3.2 Bifurcation analysis detects change in the dynamics
If, in contradistinction to subsection 4, we allow for delay τ > 0 then the structure of the eigenvalues
of a linearized system along the system trajectories may change. In order to capture this by means
of detecting a qualitative change in the systems dynamics, a value τ0 will be determined for which
the system undergoes a Hopf bifurcation. This may be achieved by way of a symbolic computation
which applies Normal Form Theory from bifurcation analysis (Han and Yu [6]). The procedure of
determining such a τ0(a, a1, ..., a13, .) is both potentially complex and tedious often resulting in long
symbolic expressions. A Maple program developed in [6] for dealing symbolically with bifurcation
analysis may be applied. In doing so a series of intermediate expressions will be generated. With bij

standing for
∂fi(x)

∂xj
computed at x = (x10, x20, x30, x40) we obtain the Jacobian of the dynamics at the

stationary point. Formally we also differentiate with regard to x1(t − τ), resulting in c41, which in our
simple linear case happens to be a12. Hence upon executing in Maple commands

> b11:=eval(diff(F1,x1),[x1=x10,x2=x20,x3=x30,x4=x40]);
> ...
> b44:=eval(diff(F4,x4),[x1=x10,x2=x20,x3=x30,x4=x40]);
> c41:=eval(diff(F4,y1),[x1=x10,x2=x20,x3=x30,x4=x40]);

we get the Jacobian matrix and c41, where “y1” stands for extra variable x1(t − τ), τ > 0. In order to
get a Hopf bifurcation point in terms of τ > 0 one executes the further Maple statements:

> alpha3:=-(b44+b11+b22+b44);
> alpha2:= b11*(b22+b33)+b22*b33-b12*b13-b12*b21-\

-b32*b23+b44*(b11+b22+b33);
> alpha1:=-b44*(b11*(b22+b33)+b22*b33-b31*b13-b12*b21-\

-b32*b23-b11*b22*b33+b12*b21*b33+b32*b23*b11+b31*b13*b22);

123



KKnnoowwlleeddggee  aabboouutt  rreepplleenniisshhaabbllee  rreessoouurrcceess::  tthhee  ddyynnaammiiccss  ooff  uunneemmppllooyymmeenntt  aanndd  jjoobb  ccrreeaattiioonn  

> alpha0:=-b44*(-b11*b22*b33+b12*b21*b33+b32*b23*b11+b31*b13*b22);

> beta2:=-b14;
> beta1:= b14*(b22+b33)-b13*b34-b24*b12;
> beta0:=-b12*b23*b34-b13*b24*b32-b14*b22*b33+b14*b23*b32+\

+b13*b34*b22+b24*b12*b33;

> gamma6:=alpha3-2*alpha2;
> gamma4:=alpha2ˆ2+2*alpha0-2*alpha1*alpha3-c41ˆ2*beta2ˆ2;
> gamma2:=alpha1ˆ2-2*alpha2*alpha0-c41ˆ2*beta1ˆ2+2*beta0*beta2*c41ˆ2;
> gamma0:=alpha0ˆ2-c41ˆ2*beta0ˆ2;

> eq1:=xˆ8+gamma6*xˆ6+gamma4*xˆ4+gamma2*xˆ2+gamma0;
> sols1:=solve(eq1,x);

>#Take a positive solution of sols1
> omega:=sols1[2];

The resulting value of τ0 is symbolically expressed as a function of the original model parameters
a, a1, ..., a10, and a12, a13 as all the Jacobian matrix entries bij are functions of some of the latter. Trans-
lating into a more readable form we finally have:

τ0 = arccos

(
(β0 − β2ω2)(α2ω

2 − ω4 − α0) + β1ω(α3ω
3 − α1ω)

c41((β0 − β2ω2)2 + β21ω
2)

)
+ constant× π

ω
,

which is a rather complicated function of the original model parameters. Note that although c41 :=
a12 appears explicitly in this function it also affects γ0, γ2 and γ4 in the above Maple expressions.
In order to appreciate the potential complexity of equivalent symbolic manipulations applied to possible
model extensions, bear in mind that the simplicity of equation 4 also much simplifies the Maple reduction
process show here.

For the numerically instantiated parameter values of the model a delay value of τ0 = 20.05768477
results for locating a bifurcation point. If 0 ≤ τ < τ0, the solution of our dynamical system is asymptot-
ically stable. For τ = τ0 the solution exhibits a limit cycle and for τ > τ0 the solution becomes unstable.
More numerically oriented bifurcation analyzes than the above procedure based on Normal Form The-
ory may also be performed by using automatic differentiation and trajectory pursuit (Gukenheimer &
Meloon [5]). For more details on the computer assisted determination of the equilibrium and bifurcation
points of out dynamical system, the reader may contact the authors.

4 Modes of simulation as different views on the process
Numerical simulation is performed for alternative sets of initial conditions by using the model parameter
values from subsection . In all case we use the initial function V (−τ ≤ θ ≤ 0) = x1(0), i.e. we use the
initial value at t = 0 of the retarded variable. The software used in the sequel is Matlab 12 and Scilab
5.4.1 respectively.

Figure 2 depicts a dynamical process which is asymptotically stable in all four variables, oscillating
with diminishing amplitudes.

Figure 3 depicts a dynamical process which is asymptotically stable in all four variables, oscillating
with slowly diminishing amplitudes.
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Figure 2: Time evolution of xi(t), i = 1, ..., 4 for the “small” delay τ = 15.

Figure 3: Time evolution of xi(t), i = 1, ..., 4 for the “large” delay τ = 63.
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We have also generated a stochastic version in the sense of Ito of the above differential equations by
adding noise to the respective increments ∆txi(t) independently to all i = 1, ..., 4 variables. Analyzing
the similarity of these stochastic orbits (not shown here) to the empirical time series from labor markets
of some developed economies is the aim of present research.

5 Conclusion
Our dynamical model is selected for representing certain aspects of the labor market in an advanced
economy. In a preliminary phase, we consider the systemic effects of certain classes of stylized dynamic
models which have been used in the literature for capturing a process which can be described as “re-
plenishing a complex resource” in a biological or social context. This allows for viewing unemployment
and job creation as being robustly described by a system of four nonlinear differential equations with
time delay. As expected, the model shows that unemployment decreases if the number of newly created
vacancies increases. Unemployment can be “controled” by by creating new jobs with a rate proportional
to the number of unemployed (i.e. the process is not run-away; think of this as a feedback control).

A stochastic model version may be more useful for predictions. Such a model extension was tested
and will be reported in future work. The existing model can be further generalized by taking into account
some additional variables which describe job creation in the private and in the public sector. An interest-
ing questions to pursue is what adaptations would be necessary if we wish to model a labor market from
country with emerging economy, or those from trans-border and otherwise defined economic regions.
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