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Abstract 

In this article, we propose a method for sampling the contents of random databases. This type of 

database is important either in modeling uncertainty or storing data whose values follow a probability 

distribution. Such uncertain or random data appear in a variety of scientific fields. In order to perform 

analysis or validate the properties of these databases it is useful to have samples of their instances. Our 

work introduces a formalization of relations in databases, which will provide a sound basis for the 

sampling algorithms that we will present. We classified the categories of atomic constraints and 

focused on them, thus obtaining algorithms that ensure that data satisfy each class of constraints 

defined in the database. For the modeling of the external constraints, our approach uses the graph 

theory. We illustrate the importance of the algorithm in the case of generating surface data. 

1 Introduction 

Generally, information is useful and valuable as it can provide support in decision making. Data 

behind the information may come from different sources and sometimes it is ambiguous or 

potentially erroneous. Even under these circumstances, databases have to provide the answers that 

at least converge to the real, expected information ([10]). The domain of databases that store this 

type of uncertain or error carrying information is closely related to the random databases field 

([4], [9], [13]). The importance of this type of database is significant in a variety of research 

domains, like natural sciences, medicine, telecommunications and economics. It should also be 

noted in the domains of research that manage data provided by sensors.  

When dealing with random databases, it is often necessary to obtain samples of them; such 

samples would allow further statistical analysis and the discovery of meaningful results on 

random data ([6]). A previous formal framework for database sampling in presented in [2]. Our 

work provides a method of sampling a database whose model might be complex. The relations in 

the database are considered with their corresponding attribute domains and with their specific 

constraints.  

The database constraints are classified in distinct, atomic types according to their functionality. 

Each category of constraints is studied, leading to a data generation algorithm which ensures their 

satisfaction. The case of the external constraints is more complex and it was treated using 

elements of the graph theory ([11]). Overall, our method brings as benefit the possibility to obtain 

a database instance, given its structure, constraints and attribute domains.  

In our work, we considered even the most particular types of associations that could appear in real 

database models, leading to constraints. As a consequence, the proposed algorithm supports even 

more complex database design cases, in which a foreign key is compound or the table is auto -

referred. 
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In the second section of this paper we propose a formalization of the concepts of database theory 

which are relevant to our approach. The third part presents the elements of graph theory that are 

needed in resolving the external constraints; also, their application to our method is described. 

The fourth part presents the algorithm for the processing of each type of constraints category 

defined in the database’s model. In the fifth section, we illustrate the importance of our algorithm 

in the case of generating surface data for the study of entropy transfer during sliding ([3]). The 

article ends with a conclusions section that briefly emphasizes the contributions of the presented 

research. 

2 Relational Databases 

In order to describe the method that we conceived for database sampling, we firstly prov ide a 

formalization which is close to the approach of our technique. In this respect, we start from the 

main concepts of database, relation, attributes and constraints.  

As preliminaries from the database theory, we recall that a database is a set of relations. Each 

relation of the database is described by its corresponding relation schema ([1], [5]), which usually 

contains the attributes names, their domains and the primary key. We extend this concept, 

considering that a relation is described both by the schema (attributes and constraints) and the 

implementation (table). 

Formally, consider a relational database, which is a set of relations, denoted by  1,
i

DB R i n  , 

where 
i

R  are the relations and n  is the number of relations in the database. Each relation 
i

R  

has three associated sets  i
A R ,  i

C R  and  i
T R  representing the set of attributes, the set of 

constraints and, respectively, the relation’s implementation or table.  

The attributes of a relation R  are represented by the set    1,
i A

A R A i n  , where 
i

A  are the 

attributes and 
A

n   is the number of attributes, denoting the relation’s arity ([5]). Each attribute 

i
A  has an associated domain of values  i

D A .  

As a remark, an attribute of a relation can be represented only by its associated domain. 

The domain of values of the attribute 
i

A  is the set    1,
i j i

D A v j n  , where 
j

v  are values and 

i
n   is the number of values in the domain. We consider that each domain 

i
D  contains the 

value null  which denotes unknown information. 

In order to classify the database’s constraints in atomic types, it can be noticed that, actually, the 

not null constraint is a particular case of conditional (check) constraint and the primary key 

constraint is a combination of uniqueness and not null. Subsequently, the constraints in a database 

can be classified in three atomic types: conditional, unique and external. An external constrain t 

refers to columns in different tables, so it represents the foreign key constraints.  

Hence, we can consider that the constraints of a relation R  are organized by categories into the 

tuple    , ,
C U E

C R C C C , where 
C

C , 
U

C  and 
E

C  are the sets of conditional, unique and 

respectively, external constraints. 

In terms of the formalism that we are introducing for the design of our method, the three sets o f 

constraints specified in a relation are defined below. 

Definition 1. The conditional constraints of a relation R  are represented by the set 

   1,
iC X C

C R P i n  , where 
iX

P  are predicates associated to subsets 
i

X  of attributes that belong 

to  A R , 
1 2 1 2

,
i i i i

X X X X   for each 
1 2 1 2
, 1, ,  ci i n i i  , and 

C
n  is the number of conditional 

constraints, 
 | |

, 2
A R

C C
n n  . 
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 In the definition above, we consider that the attributes of the set 
i

X  are involved in the definition 

of the predicate
iX

P . 

Further, we consider that a unique constraint is represented by the set of attributes on which the 

uniqueness is declared: 

Definition 2. The unique constraints of a relation R  are represented by the 

set    1,
U i U

C R X i n  , where ( )
i

X A R  are subsets of attributes belonging to  A R ,
1 2

,
i i

X X

1 2i i
X X for each 

1 2 1 2
, 1, ,  Ui i n i i  , and 

U
n is the number of unique constraints, 

 
, 2

A R

U U
n n  . 

The external constraints in the third category involve a second relation R , two subsets of 

attributes belonging to  A R , respectively  A R  and a bijection between these subsets, like in the

following: 

Definition 3. The external constraints of a relation R  are represented by the set 

    ,
, 1,

i i
E EX X

C R R G i n


  , where R  are database relations, ( )
i

X A R  are subsets of attributes 

belonging to  A R ,
1 2 1 2

,
i i i i

X X X X  for each 
1 2 1 2
, 1, ,  Ei i n i i  ,  i U

X C R   are unique 

constraints that belong to R , 
,i iX X

G

 are the graphs of bijective functions :

i i i
f X X   and 

E
n  is 

the number of external constraints, 
 

, 2
A R

E E
n n  .  For each pair  

,
,

i iX X
A A G


  , the associated 

attribute domains are equal, i.e.    D A D A .

We emphasize that in all three definitions given before the indices of the subsets 
i

X  are ordered 

ascending according to the number of elements in these subsets. This order is important in our 

sampling algorithm for optimization purposes. 

In database theory, a relation schema can be implemented as a table. A relation schema can have 

multiple instances, which are the states of the relation at given moments in time ([5]). The table is 

the container of the current instance of the relation schema. 

Formally, the table of a relation R  is the set    1,
i R

T R t i n  , where 
i

t  are tuples of values, 

 
 j

i j

A A R

t D A


   and 
R

n  is the cardinality of the relation, 
R

n  . 

In order to describe the sampling method we conceived we need to use the projection operation 

from the relational algebra ([1]) and to define the extension of this operation. 

The projection of a table  T R  on a set X  of attributes that belong to  A R  is a function
X

 that

associates to each database’s table a set of tuples: 

     1,
X i T

T R t X i n   , (1) 

where    i j j
t X v A X   is the restriction of the tuple     1,

i j
t v j A R T R    on the set of 

attributes X  and 
T

n  is the number of restricted tuples,  ,
T T

n n T R  . 

The table  T R  corresponding to a relation R  has to satisfy the constraints  C R  of the same

relation, i.e. the following implications hold: 

     ,  
X C X

P C R t T R P t true      .

 1 2 1 2
,  ; ,

U
X C t t t t T R         1 2X X

t t   

 ,
, ( )

X X E
R G C R
        X X

T R T R  
  
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Further, we introduce the extension of this operation. We denote by  1,
X i TX

T T i n  a table 

grouped by the projection on a set of attributes  X A R , where  i
T T R  are groups of tuples 

that partition the table  T R :

 
1, 1,

,
TX TX

i i

i n i n

T T R T
 

  , (2) 

such that    1 2X X
t t   for each

1 2
,

i
t t T ,    1 2X X

t t   for each
1 21 2
,

i i
t T t T  , 

1 2
i i , and 

TX
n   is the number of groups. 

Definition 4. Let be T(R) a table corresponding to a relation R and let 
1 2
, ( )X X A R  be sets of 

attributes. The extension of the projection of the table T(R) is the function: 

        
1 2 2

1 2

1

i

X X X i

A X X

T R T R D A  

 

   , (3)  

where 
1

X  is the set of attributes of the extension and 
2

X  is the set of attributes of the projection. 

3 Graphs of Relations and Graphs of Attributes 

3.1. Preliminaries 

A multiset 
A

M  is the graph of a function :m A   which assigns an order of multiplicity to 

each element of the support set A . 

A directed graph is a pair  ,
E

G V M , where V  are the vertices and
E

M  are the edges. The 

vertices of a graph G  are represented by the set    | 1,
i V

V G v i n  , where 
V

n   is the number 

of vertices. The edges of the graph G  are represented by the multiset 
 E G

M , where 

    1 2
, 1,

i E
E G e v v i n    denotes a set that contains pairs of vertices,  1 2

,v v V G , and 
E

n  is 

the number of these pairs ([7]). 

The external neighbours of a vertex v  of the graph G are represented by the set: 

    ,
v

V v V G e v v E       . (4) 

Similarly, the internal neighbours of a vertex v  are specified as: 

    ,
v

V v V G e v v E       . (5) 

The sets defined in formula (4) and (5) allow us to introduce the external and the internal degrees 

of a vertex v  of the graph G . These degrees, denoted by  G
d v ,  G

d v  specify the number of

outbound, respectively inbound edges relative to the vertex v  ([7], [11]). They are given by the 

following formulas: 

    ,
v

G

v V

d v m v v






  , (6) 

    ,
v

G

v V

d v m v v






  . (7) 

We denote the set of vertices ordered descending by their internal degrees as the set 

 1,
G

id
V v i V   , where    

1 2G i G i
d v d v  , 

1 2
1 i i V   . 

The network of paths that connect two vertices ,v v V  is the set  ,
1,

v v i P
N P i n   , where 

i
P  are 

paths that begin at v  and end at v  and 
P

n   is the number of possible paths. 
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 A path that belongs to a network 
,v v

N 
is an ordered set  1,

i P
P e i l  , where 

i
e E  are edges of 

the graph,  1
,

i i i
e v v


 , 

1
v v , 

1n
v v


 , and 

P
l   is the length of the path. 

A network of closed paths is a network of paths
,v v

N . 

3.2. Graphs Modelling the Relational Databases 

In our approach, we consider that a relational database DB  has an associated pair of 

graphs  ,
A R

G G , where 
A

G the graph of is attributes and 
R

G  is the graph of relations. We introduce 

these concepts in the definitions that follow in this paragraph.  

Let DB  be a database as defined in section 2, with DB n , n and  i i
A R m  for 

each , 1,
i

R DB i n  . 

Definition 5. The graph of attributes associated to a relational database is the graph
A

G , where: 

      , ,
A

V G R A R DB A A R     (8) 

and 

             , ,
, , , , , , ,

A X X E X X
E G R A R A R DB R G C R A A G 

         . (9) 

A vertex of the graph of attributes is specified by a pair composed of the relation name and an 

attribute of this relation. As we can notice, the support edges of 
A

G  are defined by pairs of 

attributes that belong to external constraints. 

Definition 6. The graph of relations correspondent to a relational database is the graph
R

G , where 

   R
V G R R DB    and 

       ,
, , ,

R X X E
E G R R R DB R G C R

      . (10) 

The support edges of 
R

G  are defined by pairs of relations that are involved in external constraints. 

In both graphs defined above, if an edge appears more than once, then the multiplicity of that edge 

increases adequately.  

In the following we consider that a database is correctly defined if the graph of attributes has only 

networks of open paths, meaning that 

  ,A v v
v V G N    . (11) 

4 Sampling Algorithm 

The algorithm we introduce refers to the sampling of data in a random database, which is defined 

as presented in section 2 of this paper. Briefly, the data in the generated tables need both to 

belong to the specified attributes domains and to satisfy the constraints defined on the relations in 

the database. More, we suppose that the database is correctly defined, in the sense given in (11). 

In order to process all categories of constraints, the algorithm involves two stages which will be 

presented as separate methods. 

We define the algorithm ALG  that constructs the tables corresponding to the relations of a 

random relational database as a pair of methods  ,
CU R

ALG M M , where
CU

M represents the 

method that constructs the tables according to the conditional and unique constraints and 
R

M

represents the method that manipulates the constructed tables according to the reference 

constraints. 

4.1. Method to Sample Tables with Conditional and Unique Constraints 

We describe the method 
CU

M  using the following pseudo code representation. 
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Input: The database DB  having the tables associated to each relation empty, 

i.e.  T R  , R DB  .

1. BEGIN

2. FOR 1,i DB

3.    ;i
T T R




4. FOR  1,
c i

j C R

5.  ;
jX c i

P C R

6.  1 ;
jX

T T   

7.   ;
jX

T T t T P t   

8. END FOR

9. 
   1 ;

iA R
T T   

10. FOR  1,
u i

j C R

11.  ;j u i
X C R

12. ;
jX

T T  

13. FOR 1,
jX

k T

14. ;
jk X

T T  

15.  ;k k
T select T

16. END FOR

17. 

1,

;

X j

k

k T

T T



  

18. END FOR

19.   ;
i

T R T

20. END FOR

END 

Output: The database DB  with the tables associated to each relation having data according to the 

defined conditional and unique constraints. 

For each relation 
i

R  of the database, the method above considers an auxiliary table T , initially 

with no rows and no columns (line 3). As the method uses the extension operation of projected 

tables, this table is initialized using the projection on the empty set of attributes.  

For each conditional constraint defined on
i

R , the method takes the attributes set 
j

X

corresponding to the constraint’s predicate 
jX

P  and applies the extension with 
j

X  of the 

projection on the table T  (line 6). The records that do not satisfy the predicate 
jX

P  are removed 

from the table T  (line 7). After processing all the conditional constraints, the columns that were 

not included in these constraints are populated by the extension of the tableT , which is actually 

the result of a projection (line 9).  

Then, for each unique constraint defined on
i

R , the method takes the corresponding attributes set 

j
X  and considers the table 

jX
T as the table T  grouped by the projection on the attributes in 

j
X

(line 12). For each group 
k

T  in 
jX

T , the function select(Tk) chooses a single random record (line 

15), so that the unique constraint is satisfied. The selection method can use the simulation of any 

probability distribution (uniform, exponential, normal etc.), thus giving the database a random 

feature ([8], [12]).  
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 The table T  becomes the union of the atomic groups 
k

T  (line 17). After processing all the unique 

constraints, the table T  is associated to the relation 
i

R  (line 19). 

4.2. Method to Sample Tables with External Constraints 

The method 
R

M  in the algorithm ALG  can be described using the following pseudocode 

representation. 

Input: The database DB , with DB n , having the tables associated to each relation generated 

with the method 
CU

M . 

1. BEGIN 

2. 1, 0;used n  
 

 

3. FOR 
GR

i d
R V   

4.  IF   0used i   

5.   ;
i

X R  

6.  WHILE X   

7.      ;
next

X   

8.      ;
GR

d
X X   

9.      FOR 
1 GR
i d

R X   

10.          ;
del

T   

11.          FOR  
1

1,
E i

j C R  

12.                  
2 1,
, ;

j j
i E iX X

R G C R

  

13.                FOR  
1

1,
i

k T R  

14.         
1

;
k i

t T R  

15.        IF     
2j j

X k iX
t T R 


  

16.     ;
del del k

T T t   

17.        END IF 

18.               END FOR 

19.          END FOR 

20.          IF 
del

T   

21.      
1 1

;
i i del

T R T R T   

22.   
1

;
inext next R

X X V    

23.          END IF 

24.           1
1;used i   

25.       END FOR 

26.       ;
next

X X  

27.  END WHILE 

28.  END IF 

29. END FOR 

30. END 

Output: The database DB  with the tables associated to each relation having data according to the 

defined external constraints. 
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The method above marks a relation as used if it was treated by the algorithm, so that it will not be 

processed again. Each main iteration ensures that a connected component of the relations graph 

has been entirely treated. The relations in the database will be processed in descending order by 

the number of external constraints that refer to the relation, so that the relations referred most are 

treated first.  

For each unused relation 
i

R  in
GR

d
V  , an auxiliary set X  is initialized with the element 

i
R  (line 5). 

Again, we consider the relations set X  ordered by the internal degree 
GR

d
X  . For each relation 

1i
R  

in this set, the algorithm takes all the relations 
2i

R  (line 9) that are referred by 
1i

R ; for each tuple 

k
t  in the associated table  

1i
T R , if the projection on the set of attributes 

j
X  defining the 

constraint is not found in the projection of the table  
2i

T R  on the corresponding attributes set 

j
X  , then the tuple 

k
t  is included in the set 

del
T  for deletion (line 16).  

After processing all the constraints, the tuples in 
del

T  are eliminated from  
1i

T R  and the set X  

will contain the relations that depend through an external constraint on
1i

R . If no tuples have been 

eliminated, then the relations that depend on 
1i

R  will not be influenced by the current relation, so 

they are not included in the set X  for further processing. 

The algorithm can be used to generate random data for given models for the purpose of testing out 

various theories and their results.  

5 Case Study: Generating Surface Data for the Study of 

Entropy Transfer during Sliding 

In this section, we present a concrete example in which the algorithm described before can be 

used. The case study taken into account needs only one method from the algorithm  ALG  but it 

allows us to understand easier how the algorithm works. Many more complex examples using the 

proposed algorithm will be given in a future article.  

In the study of entropy transfer during sliding presented in [3], the experiments and their 

subsequent computations started out with a generated surface. It was considered that this surface 

contained sites in one dimension and each site was described by its height. The data structure 

capable to retain the information of the surface is a simple one dimensional array which maps the 

heights as values and their corresponding sites as indices. Therefore, for a number of n   sites 

we need an array of length n  which will contain at each i -th element the height 
i

h   of the i -th 

site. 

We expressed the definition of the surface using an informatics data structure, so we consider 

transforming it further so it can match the relational database theory. We need a simple relation R  

in order to map the contents of the array into its associated table. The attributes set of R  would 

minimally be    1 2
,A R A A , where 

1
A  represents the site and 

2
A  is the corresponding height. 

The relation needs to have a unique constraint defined on the attribute
1

A , in order to ensure that 

the same site will not have two different heights. The constraints need to be  , ,
C U E

C C C C , 

where   1U
C A is the set of unique constraints. We will consider the external constraints to be 

unnecessary here, as in this case the data model is very simple. Therefore 
E

C  . The 

conditional constraints can be more or less restrictive, depending on the purpose of the required 

data, so we will only consider that the height at each site needs to be strictly positive, 0
i

h  , 
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 1,i n . Thus, the set of conditional constraints is formally defined as
  

2C A
C P , 

where
   

2 2
0

A
P A  . 

We have a relation schema, so next we will need actual values. We consider the domains 

associated to the attributes of R  to be    1
1000D A i i    and    2

2;2D A    . 

There are two remarks that can instantly be made so far, but which will not prevent by any means 

the algorithm to run its course without error. The first observation is that  2
D A  is an infinite set 

in the theory of real numbers so we cannot determine all the numbers that belong to it. In 

informatics, however, a number can only be expressed with a certain precision of digits, which is 

also limited by the memory available to store it, so in this case infinite numbers can only be 

approximated more or less.  

Therefore, our domain will contain only the numbers in the given interval which have, for 

example, a precision of two digits, thus making it a finite set of numbers. The second observation 

is that the conditional constraint 
2

0A   can be eliminated if we consider the domain  2
D A  to 

contain strictly positive real numbers:    2
0;2D A  . The reason for which the constraint is 

defined is to illustrate the possibility of introducing conditional constraints.  

The algorithm performs the cross product between the domains of the attributes 
1

A  and 
2

A  and 

keeps only the tuples that satisfy the conditional constraints. In our case, the pairs that contain 

negative heights are discarded and the result looks like:  

0.01 0.01 0.01

0.02 0.02 0.02
1 2 1000

2.00 2.00 2.00

. (11)  

The valid pairs are grouped by the projection on the set of attributes  1X A , which represents 

the single unique constraint that we have defined. The algorithm selects a single pair from each 

group through the random selection method provided at the corresponding step of the algorithm. 

In our case we consider that the method makes a uniform selection, meaning that the pairs from 

each group have equal chances of being selected. The result could resemble:  

      1,0.93 , 2,1.07 , , 1000,1.40  or       1,0.03 , 2,0.11 , , 1000,1.97  or another of the 1000200  

possible combinations. 

6 Conclusion 

The algorithm presented in this paper allows obtaining samples of databases with complex design 

that might also have to store uncertain or random data. Even for attributes domains having small 

cardinality, a large database can be generated. The random feature of our algorithm is justified by 

two aspects: the values of at least one domain can follow a certain probabili ty distribution and the 

selection of a unique row can be randomly performed using a specific algorithm. In our future 

work, we will provide an optimization of the processing of the very restrictive constraints, which 

could result in the generation of empty tables due to the random selection of tuples. 

The main contribution of the research presented in this article consists in the fact that, using our 

approach on relations and constraints, it provides the suitable means to sample relational 

databases. The benefit of such a sample is that it can be used for various purposes, including 

analysis and testing. As an example, we considered the case study regarding the generation of 

surface data.  

The algorithm completely processes the databases constraints, allowing the implementation of any 

model, as it exhaustively covers all the foreseeable situations in database modeling . 
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