

TThhiirrdd IInntteerrnnaattiioonnaall CCoonnffeerreennccee

MMooddeelllliinngg aanndd DDeevveellooppmmeenntt ooff IInntteelllliiggeenntt SSyysstteemmss
OOccttoobbeerr 1100 -- 1122,, 22001133

““LLuucciiaann BBllaaggaa”” UUnniivveerrssiittyy

SSiibbiiuu -- RRoommaanniiaa

A Better Genetic Representation of a Fuzzy Controller

Enabling the Determination of Its Parameters with the Help

of a Genetic Algorithm

Stelian Ciurea

Abstract

Since 1975, fuzzy controllers have fully proved their usefulness in the most diverse applications.

The design of such a controller involves setting up inference rules and values for a large number

of parameters. There are situations where this is possible either through the expertise of a human

operator or through a knowledge stock. If we cannot rely on such information, genetic algorithms

are a good alternative to determine these values. The first condition in solving a problem by

means of a genetic algorithm is the genetic representation of the solution. In this paper, we present

the genetic algorithm that we designed with a view to determining the parameters of a fuzzy

controller for the Truck Backer-Upper Problem (this problem is considered an acknowledged

benchmark in nonlinear system identification). The genetic representation used in this algorithm

belongs to us.

1 The Fuzzy Controller for the Truck Backer-upper Problem

1.1 The Truck Backer-Upper Problem

This problem, made famous by [3], has been investigated by many researchers. On the other hand,

it is difficult not to notice that nearly anyone is able to drive the truck to the desired position if

given some time to get used to the controls.

The truck corresponds to the cab part of the Nguyen-Widrow's truck and trailer, referred to as the

simplified Nguyen-Widrow problem. The truck position is determined by the three state variables

x[-50, 50], y[0, 80] and φ[-90°, 270°] - the angle between the truck's onward direction and

the x-axis (Fig. 1). The width and length of the truck are 5 and 2 meters, respectively.

The truck sets out from an initial position with the three state variables xi, yi and φi and must

reach the loading dock with xf = 0, yf = 0, φf = 90°. The truck only moves backwards with the

fixed speed. To control the truck at every stage, an appropriate steering angle θ[-45°,45°] must

be provided. Thus, the controller is a function of state variables θ = f(x, y, φ).

49

AA bbeetttteerr ggeenneettiicc rreepprreesseennttaattiioonn ooff aa ffuuzzzzyy ccoonnttrroolllleerr eennaabblliinngg tthhee ddeetteerrmmiinnaattiioonn ooff iittss ppaarraammeetteerrss wwiitthh

tthhee hheellpp ooff aa ggeenneettiicc aallggoorriitthhmm

Typically, it is assumed that there is enough clearance between the truck and the loading dock so

that the truck position coordinate y can be ignored, simplifying the controller function to: θ = f(x,

φ). For obvious reasons, such a controller does not perform very well if the distance between the

truck position and the loading dock is small.

The movements of the truck are described by the following system of equations:

tan

sin

cos

.

.

.

l

v

vy

vx

 (1)

where l is the length of the truck and v is the backing up speed of the truck. These equations are

applied to the current state, and the truck moves on until one of the following stopping conditions

is met:

 y ≤ 0 (the truck reached the loading dock);

 x, y or φ have an unacceptable value: y>100, x[-50, 50] or φ [-90°, 270°]

1.2 The Fuzzy Controller

We implemented a Mamdani-type fuzzy controller. The input data are x and φ, and the output data

is the steering angle θ. For x, we have opted for 5 fuzzy sets with the following linguistic

variables: left - LE, left center - LC, center - CE, right center- RC, and right – RI. For φ, we have

settled on 7 sets: RB (right below), RU (right upper), RV (right vertical), VE (vertical), LV (left

vertical), LU (left upper), and LB (left below). For θ, we have also selected 7 sets: NL (negative

large), NM (negative medium), NS (negative small), ZE (zero), PS (positive small), PM (positive

medium), and PL (positive large). The membership functions we have employed are trapezoidal or

triangular (Fig. 2, Fig. 3 and Fig. 4).

Figure 1. Truck backer-upper system

50

SStteelliiaann CCiiuurreeaa

Starting from these sets, a fuzzy controller needs 5×7=35 inference rules based on fuzzy

arguments. For example, if the x position is right centre, and the angle φ is vertical, then we want

to steer positive medium. Symbolically, IF x is RC AND φ is VE, THEN θ is PM. Table I

illustrates a possibility of defining these 35 rules.

Table I: Matrix of the Rules for the control of the Truck Backer-Upper System:
φ

x
RB RU RV VE LV LU LB

LE NL NL NL NM NM NS PS

LC NL NL NM NM NS PS PM

CE NM NM NS ZE PS PM PM

RC NM NS PS PM PM PL PL

RI NS PS PM PM PL PL PL

For the two input data variables – x and φ, the membership function is calculated for each of the

35 rules; we group the two results of these memberships function by means of an AND fuzzy

operation, and then by means of an implication operation we obtain fuzzy sets for θ. We will have

35 θ sets corresponding to the 35 rules. These are grouped by means of the aggregation operation

Figure 3. Example of trapezoidal membership functions for

variable φ.

Figure 4. Example of trapezoidal and triangular membership

functions for θ.

Figure 2. Example of trapeziodal for variable x.

51

AA bbeetttteerr ggeenneettiicc rreepprreesseennttaattiioonn ooff aa ffuuzzzzyy ccoonnttrroolllleerr eennaabblliinngg tthhee ddeetteerrmmiinnaattiioonn ooff iittss ppaarraammeetteerrss wwiitthh

tthhee hheellpp ooff aa ggeenneettiicc aallggoorriitthhmm

to get the output θ-set. Then, to find the actual control value, we must convert the output fuzzy set

into a numerical value for θ by means of the defuzzification operation. There are various formulae

for the fuzzy AND, implication, aggregation and defuzzification operations. It follows that, in

order to fully define fuzzy controller, we need 35 inference rules and parameters that define the

type and positioning of the fuzzy functions on the universe of discourse axis for the three

variables (x, φ, θ), as well as the implementation of the fuzzy operations that occur in the

calculating the response of the controller. There are no mathematical formulae to provide the

values for these parameters.

3 The Genetic Algorithm

Genetic algorithms belong to the category of probabilistic algorithms. Such an algorithm

starts from a set (population) of possible solutions (chromosomes). The performance of each

chromosome is calculated by means of an evaluation function which appraises the accuracy of the

solution provided by that chromosome to the studied problem. The new population is formed by

selecting the fitter individuals. Some members of the new population recombine by means of

“genetic” operators to form new solutions. There are unary transformations like mutations, which

create new individuals by a small change in single individual and binary transformations, such as

the crossover, which create new individuals by mixing traits from the two parents. After a number

of iterations (generations) the search converges and is successful if the best individual obtained at

a given time represents the optimum solution.

3.1 Genetic representation of the controller

The purpose of the genetic algorithm we have designed is to determine the parameters of the

fuzzy controller optimal for solving the truck backer-upper problem. Because of the intrinsic

symmetry of the problem, we have selected the member functions that are symmetrical to the

median axis of the universe of discourse for each of the three variables. Thus, in a chromosome,

for x, we have retained parameters for variables CE, RC and RI; variable LE mirrors RI

symmetrical to axis x=0 and LC mirrors RC. Similarly, for φ we have represented parameters for

variables VE, LV, LU and LB, and for θ, variables ZE, PS, PM and PL.

We coded the following parameters that typify a fuzzy controller:

 The interference matrix as a matrix with 5 rows and 7 columns, where each item can range

between 1 and 7 corresponding to the 35 interference rules (1 means NL, 2 means NM,

etc.);

 the type of fuzzy operations through 5 integer numbers for the type of fuzzy operations

AND (0=min, 1=product), OR (0=max, 1=a+b-ab), the type of implication operation

(0=min, 1=product), the type of the aggregation operation (0=max, 1=sum, 2=a+b-ab) and

the type used in the defuzzification operation: a value between 0 and 3 corresponds to the

methods based on integral calculus, while values between 4 and 6 are for elitist methods;

 The shape and position of the fuzzy sets in the universe of discourse. We point out that we

chose the trapezoidal for the trapezoidal membership functions corresponding to these sets

(we assumed that the triangles are special cases of trapeziums with smaller bases of

negligible length).

3.1.1 Representing classical trapezoidal membership functions

With the release of MATLAB 6, the “Fuzzy Logic Toolbox” library has been implemented [14].

Within it, a number of membership functions were defined for fuzzy sets, among which

trapezoidal and triangular-shaped ones. Due to the popularity of MATLAB, the method by which

52

SStteelliiaann CCiiuurreeaa

fuzzy sets are represented in this software has become traditional, and most papers dete rmining

the parameters of fuzzy controllers by means of genetic algorithms use it. Thus, a trapezoidal

membership function is represented with the help of four parameters, marked a, b, c and d, with

the mathematical expression (2) and shape illustrated in Figure 5:

dxc
c-d

x-d

cx b 1

 bxa

dor x ax 0

),,,;(
ab

ax

dcbaxf (2)

where

a<b≤c<d (3)

This representation is useful when we do the calculations required to determine the value of the

output size of the controller or when we graphically represent memberships functions. However, it

is not helpful when we apply the specific operations of the genetic algorithm because we need to

introduce a number of restrictions where in the case of both mutation and crossover, so that for

the resulting individuals relationship (3) is maintained, which burdens and slows down the genetic

algorithm. We implemented this method of representation by means of the structure termed

cromozom:
struct cromozom
{ double parammfx[5][4]; /* parameters for the 5 memberships functions of x */
 double parammfphi[7][4]; /* parameters for the 7 memberships functions of phi*/
 double parammfteta[7][4]; /* parameters for the 7 memberships functions of theta*/
 int typeand, typeor, typeimplication, typeagregation, typedefuzz, rules[5][7] ;
};

3.1.2 Our own representation of trapezoidal membership functions

We implemented the representation of trapezoidal membership functions as follows:

 for the membership functions for x 9 real parameters:

o 3 values representing the ratio between the larger base of the trapezium and the

average value of the universe of discourse – a value within the range [0.25 ; 2.0]

for variables CE, RC and RI.

o 2 values representing the percentage of the larger base of the trapezium

overlapping the larger base of the trapezium placed on its left - a value within the

range [0.05 ; 0.4] for pairs CE and RC, and respectively RC and RI

Figure 5. Trapezoidal membership function.

53

AA bbeetttteerr ggeenneettiicc rreepprreesseennttaattiioonn ooff aa ffuuzzzzyy ccoonnttrroolllleerr eennaabblliinngg tthhee ddeetteerrmmiinnaattiioonn ooff iittss ppaarraammeetteerrss wwiitthh

tthhee hheellpp ooff aa ggeenneettiicc aallggoorriitthhmm

o 3 values representing the ratio smaller base/larger base – a value within the range

[0.01; 0.65] for CE, RC and RI.

o a value representing the position of the smaller base for CE – a value within the

range [0.05 ; 0.95] out of the available interval calculated depending on the large

basis for RC (for RI the shape of the function is a rectangular trapezium, and for

CE the trapezium is isosceles).

 13 real parameters that are determined in a similar manner, but adding one value to each

parameter to represent the functions for the other two variables (φ and θ).

The advantage of this representation is that, regardless of the method chosen for the operation of

mutation or crossover, the resulting values will belong to the intervals considered, so no further

validation tests are needed. In our application, we used a structure called cromozom2

corresponding to this way of representation:
struct cromozom2
{ int typeand, typeor, typeimplication, typeagregation, typedefuzz, rules[5][7] ;
 /* memberships functions for x*/
 double rapx[3]; /* ratio larger base / average value of the universe of discourse */
 double suprax[2]; /* percentage of the overlapping of larger bases: 0.05-0.4 */
 double procx[3]; /* ratio smaller base/larger base: 0.05-0.65*/
 double pozrelx; /* position of the smaller: 0.05-0.95 */
 double rapphi[4], supraphi[3], procphi[4], pozrelphi2,pozrelphi1; /*rapphi1 results */

double raptheta[4], supratheta [3], proctheta [4], pozreltheta2,pozreltheta1;
};

3.1.3 Conversion from our own representation of transfer functions in their traditional form

In our application, we used our own representation for the operations that are specific to the

genetic algorithm, whereas for simulating fuzzy controllers, for the graphic representation and for

the output files generated by the application, we used the traditional form. It was necessary to

implement a function converted into the traditional. For reasons of space, we only present the

conversion for member functions of input x (those for φ and θ are similar).

struct cromozom conversie(struct cromozom2 c2, double xmin, double xmax, double phimin, double
phimax, double tetamin, double tetamax)

{ struct cromozom c1;
 double bazamare[7], a[7][4], bazamica; int i,j;
 c1. typeand = c2. typeand; c1. typeor = c2. typeor; c1. typeimplication = c2. typeimplication;
 c1. typeagregation = c2. typeagregation; c1. typedefuzz = c2.typedefuzz;
 for (i=0;i<5;i++)
 for (j=0;j<7;j++)
 c1.rules[i][j] = c2.rules[i][j];
 double medianax = (xmax + xmin)/2; double mediax = (xmax - xmin) / 5;
 c1.parammfx [2][3] = medianax + mediax * c2.rapx[0] / 2; /* CE */
 c1.parammfx [2][2] = medianax + c1.parammfx [2][3] * c2.procx[0];
 c1.parammfx [2][0] = medianax - c1.parammfx [2][3];
 c1.parammfx [2][1] = medianax - c1.parammfx [2][2];
 bazamare[2] = a[2][3] - a[2][0];
 c1.parammfx [4][0] = xmax - mediax * c2.rapx[2]; /* RI */
 bazamare[4] = xmax - c1.parammfx [4][0];
 c1.parammfx [4][1] = xmax - bazamare[4] * c2.procx[2];
 c1.parammfx [4][2] = xmax + xmax/4;
 c1.parammfx [4][3] = xmax + xmax/2;
 c1.parammfx [3][0] = c1.parammfx [2][3] - bazamare[2] * c2.suprax[0]; /* RC */
 c1.parammfx [3][3] = c1.parammfx [4][0] + bazamare[4] * c2.suprax[1];
 bazamica = (c1.parammfx [3][3] - c1.parammfx [3][0]) * c2.procx[1];
 c1.parammfx [3][1] = c1.parammfx [3][0] + (c1.parammfx [3][3] - c1.parammfx [3][0] - bazamica) *

c2.pozrelx;
 c1.parammfx [3][2] = c1.parammfx [3][1] + bazamica;
 for (i=0;i<=1;i++) /* LE(i=0) and LC(i=1) */
 for (j=0;j<=3;j++)
 c1.parammfx [i][j] = medianax - c1.parammfx [4-i][3-j];
….
return c1 ;}

54

SStteelliiaann CCiiuurreeaa

3.2 The Genetic Algorithm

In the genetic algorithm that we have implemented, one chromosome is a controller and

it is a structure comprising a matrix with five rows and seven columns of integers values, 5

integer values and 35 real values that correspond to the parameters described in the previous

paragraph. The genetic algorithm attempts to determine the optimum values of all these 75

parameters.

Input data:

for the fuzzy controller: the length and speed of the truck, the minimum and maximum

values for x, y, φ, θ and set of fuzzy rules;

for the proper genetic algorithm: the number of ages, the number of chromosomes, the

selection method (we have implemented three methods: Monte Carlo , “Tournament”, and

Michalewicz [5]), the probability of crossover, the probability of selecting a chromosome for

the mutation, the probability of mutation for a gene, the number of tests for the fitness of

chromosome and the three state variables x0, y0 and φ0 for each test. To assess a

chromosome, we have simulated its route from the initial position to its final position (xf, yf,

φf), and we compute the fitness using the following function:

 (4)

Since the aim of the controller is to bring the truck to the coordinates point (0, 0, π/2),

the function we have used is a penalizing one in relation to each of the three parameters that

characterize the final state of the controlled system: the lower the value of the function, the

better the chromosome.

Output data: the average performance of the population and the performance of the best

chromosome following each generation; the parameters of all the controllers represented by

the last generation chromosomes.

The implemented algorithm:

1. Read initial data

2. Initialize the parallel work mode

3. If the process is root then

Randomly generate the initial population

4. For each age do

5. If the process is root then

6. For id1, nr_procs do

7. Send to the id process the data needed to assess the id chromosome

8. For id1, nr_procs do

9. Receive fitness value calculated for the id process

10. Selection; Crossover; Mutation

11. If it is the last generation then

12. Write the output data //in text files

13. Else //the process is slave

14. Receive the data needed to assess the chromosome

15. For each assessment test do

16. Compute the fitness

17. Send the fitness value calculated at the root

18. Close the parallel work mode;

19. Stop

casestest

222
])

2
(52[

 fff yxfitness

55

AA bbeetttteerr ggeenneettiicc rreepprreesseennttaattiioonn ooff aa ffuuzzzzyy ccoonnttrroolllleerr eennaabblliinngg tthhee ddeetteerrmmiinnaattiioonn ooff iittss ppaarraammeetteerrss wwiitthh

tthhee hheellpp ooff aa ggeenneettiicc aallggoorriitthhmm

4 Experimental Results

We wrote the application in the C language, and we have used the mpich2-1.4.1 library for the parallel
mode. We have run the application on an Intel HPC System, located at Lucian Blaga University, in
Sibiu, comprising 14 nodes, each equipped with 4 Dual Core Intel Xeon processors. As parameters of
the genetic algorithm, we have used the following: number of generations = 400, number of
chromosomes = 200, crossover probability = 0.50, probability of selecting a chromosome for mutation
= 0.25 and probability of mutation for a gene = 0.05. For the truck, we have chosen the following
characteristics: length l = 5 m and backing up speed v = 1.4 m/s. The genetic algorithms with the
parameters thus established were run for 14 randomly generated populations.

To assess the controllers we have obtained, we have used other 60 items of test data. The best

controllers obtained in each of the 14 cases have been assessed with these tests. As assessment

function, we have used the following measure of error from [6]:

11

1

90
15

4.0

i

fifix

 (5)

where xfi and φfi are the values of x and φ in the final state from each of the 60 tests.

In Table II we present the average error of the best controllers resulted from the Genetic Algorithms

using the three methods of selection we mentioned above.

Table II: Average error of the best controllers

Initial

pop.
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

Monte-

Carlo
1.10 1.46 1.41 1.28 1.44 1.21 1.16 0.92 1.27 2.06 1.08 1.27 0.96 0.92

Tourna-

ment
0.79 1.21 0.60 1.44 1.05 1.21 1.54 1.21 2.26 0.66 1.29 0.98 0.79 1.04

“Micale-

wicz”
1.20 1.02 1.51 1.30 1.31 0.87 2.0 1.23 1.13 0.80 1.38 1.25 0.60 1.29

The results of each simulation for these tests were included into one of following three categories [9]:
Good if ε ≤ 0.4 ; average if ε>0.4 but the controller led the truck to the loading dock (y=0); missed if
the truck failed to reach the loading dock. Table III presents the number of tests for which the result was
“good”. The number of “missed” tests was zero for each best controller.

Table III: Number of “good” tests

Initial

pop.
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

Monte-

Carlo
8 10 8 8 0 6 4 11 6 6 10 8 12 14

Tourna-

ment
12 6 30 4 8 13 4 8 0 24 6 14 22 10

“Micale-

wicz”
4 12 2 8 8 12 2 7 2 16 8 0 28 6

Fig. 6 illustrates the average fitness of the population that provided the best controller. Fig. 7

illustrates the fitness of the best chromosome obtained.

56

SStteelliiaann CCiiuurreeaa

For 6 of the 60 starting items of test data we have illustrated in figure 8, the trajectories obtained by
simulating the behavior of the best controller obtained.

The parameters of the best controller obtained are the following: product for fuzzy-AND, maximum
for fuzzy-OR, product for the fuzzy implication, sum for the aggregation of the fuzzy rules and
defuzzification using the sub-unitary weighted centroid method. The member functions for this
controller are those represented in Fig. 2, Fig. 3 and Fig. 4. The Matrix of the Rules is similar to the
one illustrated in Table I.

5 Conclusion

We can notice that:

The genetic algorithm proved its efficiency in all 42 tests we have performed. Thus, the ratio
between the average fitness of the initial population and the average fitness of the final population
equaled:

 18.96 with the “Monte Carlo” method;

 47.98 with the “Tournament” method;

 46.03 with the “Micalewicz” method;

Figure 7. Best fitness of the population #3, "Tournament”

Figure 8. Truck trajectories for 6 initial positions obtained with best

controller

Figure 6. The average fitness of the population #1

“Tournament”

57

AA bbeetttteerr ggeenneettiicc rreepprreesseennttaattiioonn ooff aa ffuuzzzzyy ccoonnttrroolllleerr eennaabblliinngg tthhee ddeetteerrmmiinnaattiioonn ooff iittss ppaarraammeetteerrss wwiitthh

tthhee hheellpp ooff aa ggeenneettiicc aallggoorriitthhmm

The ratio between the fitness of the best controller of the initial population and the fitness of the best
controller of the final population equaled:

 6.29 with the “Monte Carlo” method;

 8.73 with the “Tournament” method;

 7.83 with the “Micalewicz” method;

The best results have been obtained in the case of the algorithms that have used the “Tournament”
selection method. The error of the best overall chromosome is 0.598 (coresponding to the best
chromosome obtained from the initial population #3).

References

[1] Masood Anzar, Mohammad Fazle Azeem, Tanveer Chauhan & Anil Kumar Yadav, Generalized

Approach for GA Based Learning of FLC Design Parameters, IICPE-2010

[2] Danilo Pelusi, Optimization of a Fuzzy Logic Controller using Genetic Algorithms, 2011 Third

International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) 2011

[3] D. Nguyen, B. Widrow, “The truck Backer Upper: An example of self learning in neural networks, in

Neural networks for Control”, The MIT Press, Cambridge MA, 1990.

[4] Z. Michalewicz, “Heuristic Methods for Evolutionary Computation Techniques”, Journal of Heuristics,

Vol.1, No.2, 1995, pp.177-206

[5] Z. Michalewicz, “Genetic Algorithms + Data Structures = Evolution Programs”, Springer, 1998

[6] A. Riid, and E. Riistem, "Fuzzy logic in control: Truck Backer-Upper problem revisited," Proc. IEEE

10" Int. Conf. Fuzzy Systems, Melboume, Vol. 1, pp. 513-516, 2001.

[7] J. R. Koza, “A Genetic Approach to The Truck backer-upper Problem and the Inter-Twined Spiral

Problem”, IJCNN Intl. Conf. on Neural Networks, vol. 4, pp. 310-318, NY: IEEE Press, USA, 1992.

[8] S. Ciurea, I. Mihut, „Fuzzy Controller Design Using Genetic Algorithm Optimization”, 8th

International Symposium on Automatic Control and Computer Science - SACCS 2004, October 22 -

23, 2004, Iasi, Romania.

[9] S. Ciurea, „Determining the Parameters of a Sugeno Fuzzy Controller Using a Parallel Genetic

Algorithm”, Proceedings of the „9th International Conference on Control Systems and Computer

Science, University Politehnica of Bucharest, Romania, 2013”, ISBN 798-0-7685-4980-4, pg 36-43.

[10] Pintu Chandra Shill, Kishore Kumar Pal, Md. Faijul Amin, Kazuyuki Murase, “Genetic Algorithm

Based Fully Automated and Adaptive Fuzzy Logic Controller”, IEEE International Conference on

Fuzzy Systems, June 27-30, 2011, Taipei, Taiwan

[11] Zhi-Long Wang, Chih-Hsiung Yang, Tong-Yi Guo*, The Design of An Autonomous Parallel Parking

Neuro-Fuzzy Controller for A Car-like Mobile Robot, SICE Annual Conference 2010, Taipei, Taiwan

[12] http://www.mpitutorial.com.

[13] http://www.open-mpi.org/doc

[14] “Fuzzy Logic Toolbox™ User’s Guide R2011b”, The MathWorks, Inc., 2011.

STELIAN CIUREA

“Lucian Blaga” University of Sibiu

Faculty of Engineering, Department of Computer and Electrical Engineering

E. Cioran Str, No. 4, Sibiu-550025, ROMANIA,

E-mail: stelian.ciurea@ulbsibiu.ro

58

http://cs.adelaide.edu.au/~zbyszek/Papers/p20.pdf

