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Abstract 

Since 1975, fuzzy controllers have fully proved their usefulness in the most diverse  applications. 

The design of such a controller involves setting up inference rules and values for a large number 

of parameters. There are situations where this is possible either through the expertise of a human 

operator or through a knowledge stock. If we cannot rely on such information, genetic algorithms 

are a good alternative to determine these values. The first condition in solving a problem by 

means of a genetic algorithm is the genetic representation of the solution. In this paper, we present 

the genetic algorithm that we designed with a view to determining the parameters of a fuzzy 

controller for the Truck Backer-Upper Problem (this problem is considered an acknowledged 

benchmark in nonlinear system identification). The genetic representation used in this algorithm 

belongs to us. 

1 The Fuzzy Controller for the Truck Backer-upper Problem 

1.1 The Truck Backer-Upper Problem 

This problem, made famous by [3], has been investigated by many researchers. On the other hand, 

it is difficult not to notice that nearly anyone is able to drive the truck to the desired position if 

given some time to get used to the controls.  

The truck corresponds to the cab part of the Nguyen-Widrow's truck and trailer, referred to as the 

simplified Nguyen-Widrow problem. The truck position is determined by the three state variables 

x[-50, 50], y[0, 80] and φ[-90°, 270°] - the angle between the truck's onward direction and 

the x-axis (Fig. 1). The width and length of the truck are 5 and 2 meters, respectively.  

The truck sets out from an initial position with the three state variables xi, yi and φi and must 

reach the loading dock with xf = 0, yf = 0, φf = 90°. The truck only moves backwards with the 

fixed speed. To control the truck at every stage, an appropriate steering angle θ[-45°,45°] must 

be provided. Thus, the controller is a function of state variables θ = f(x, y, φ).  
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Typically, it is assumed that there is enough clearance between the truck and the loading dock so 

that the truck position coordinate y can be ignored, simplifying the controller function to: θ = f(x, 

φ). For obvious reasons, such a controller does not perform very well if the distance between the 

truck position and the loading dock is small.  

The movements of the truck are described by the following system of equations: 
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where l is the length of the truck and v is the backing up speed of the truck. These equations are 

applied to the current state, and the truck moves on until one of the following stopping conditions 

is met: 

 y ≤ 0 (the truck reached the loading dock); 

 x, y or φ have an unacceptable value: y>100, x[-50, 50] or φ [-90°, 270°] 

 

 

1.2 The Fuzzy Controller 

We implemented a Mamdani-type fuzzy controller. The input data are x and φ, and the output data 

is the steering angle θ. For x, we have opted for 5 fuzzy sets with the following linguistic 

variables: left - LE, left center - LC, center - CE, right center- RC, and right – RI. For φ, we have 

settled on 7 sets: RB (right below), RU (right upper), RV (right vertical), VE (vertical), LV (left 

vertical), LU (left upper), and LB (left below). For θ, we have also selected 7 sets: NL (negative 

large), NM (negative medium), NS (negative small), ZE (zero), PS (positive small), PM (positive 

medium), and PL (positive large). The membership functions we have employed are trapezoidal or  

triangular (Fig. 2, Fig. 3 and Fig. 4). 

 

Figure 1. Truck backer-upper system 
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Starting from these sets, a fuzzy controller needs 5×7=35 inference rules based on fuzzy 

arguments. For example, if the x position is right centre, and the angle φ is vertical, then we want 

to steer positive medium. Symbolically, IF x is RC AND φ is VE, THEN θ is PM. Table I 

illustrates a possibility of defining these 35 rules. 

 

Table I: Matrix of the Rules for the control of the Truck Backer-Upper System:  
φ 

x 
RB RU RV VE LV LU LB 

LE NL NL NL NM NM NS PS 

LC NL NL NM NM NS PS PM 

CE NM NM NS ZE PS PM PM 

RC NM NS PS PM PM PL PL 

RI NS PS PM PM PL PL PL 

 

For the two input data variables – x and φ, the membership function is calculated for each of the 

35 rules; we group the two results of these memberships function by means of an AND fuzzy 

operation, and then by means of an implication operation we obtain fuzzy sets for θ. We will have 

35 θ sets corresponding to the 35 rules. These are grouped by means of the aggregation operation 

 

Figure 3. Example of trapezoidal membership functions for 

variable φ. 

 

Figure 4. Example of trapezoidal and triangular membership 

functions for θ. 

 

Figure 2. Example of trapeziodal for variable x. 
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to get the output θ-set. Then, to find the actual control value, we must convert the output fuzzy set 

into a numerical value for θ by means of the defuzzification operation. There are various formulae 

for the fuzzy AND, implication, aggregation and defuzzification operations. It follows that, in 

order to fully define fuzzy controller, we need 35 inference rules and parameters that define the 

type and positioning of the fuzzy functions on the universe of discourse axis for the three 

variables (x, φ, θ), as well as the implementation of the fuzzy operations that occur in the 

calculating the response of the controller. There are no mathematical formulae to provide the 

values for these parameters. 

 

3 The Genetic Algorithm 

Genetic algorithms belong to the category of probabilistic algorithms. Such an algorithm 

starts from a set (population) of possible solutions (chromosomes). The performance of each 

chromosome is calculated by means of an evaluation function which appraises the accuracy of the 

solution provided by that chromosome to the studied problem. The new population is formed by 

selecting the fitter individuals. Some members of the new population recombine by means of 

“genetic” operators to form new solutions. There are unary  transformations like mutations, which 

create new individuals by a small change in single individual and binary transformations, such as 

the crossover, which create new individuals by mixing traits from the two parents. After a number 

of iterations (generations) the search converges and is successful if the best individual obtained at 

a given time represents the optimum solution. 

 

3.1 Genetic representation of the controller 

The purpose of the genetic algorithm we have designed is to determine the parameters of the 

fuzzy controller optimal for solving the truck backer-upper problem. Because of the intrinsic 

symmetry of the problem, we have selected the member functions that are symmetrical to the 

median axis of the universe of discourse for each of the three variables. Thus, in a chromosome, 

for x, we have retained parameters for variables CE, RC and RI; variable LE mirrors RI 

symmetrical to axis x=0 and LC mirrors RC. Similarly, for φ we have represented parameters for 

variables VE, LV, LU and LB, and for θ, variables ZE, PS, PM and PL. 

We coded the following parameters that typify a fuzzy controller:  

 The interference matrix as a matrix with 5 rows and 7 columns, where each item can range 

between 1 and 7 corresponding to the 35 interference rules (1 means NL, 2 means NM, 

etc.); 

 the type of fuzzy operations through 5 integer numbers for the type of fuzzy operations  

AND (0=min,  1=product), OR (0=max, 1=a+b-ab), the type of implication operation 

(0=min, 1=product), the type of the aggregation operation (0=max, 1=sum, 2=a+b-ab) and 

the type used in the defuzzification operation: a value between 0 and 3 corresponds to the 

methods based on integral calculus, while values between 4 and 6 are for elitist methods; 

 The shape and position of the fuzzy sets in the universe of discourse. We point out that we 

chose the trapezoidal for the trapezoidal membership functions corresponding to these sets 

(we assumed that the triangles are special cases of trapeziums with smaller bases of 

negligible length). 

 

3.1.1 Representing classical trapezoidal membership functions 

 

With the release of MATLAB 6, the “Fuzzy Logic Toolbox” library has been implemented [14]. 

Within it, a number of membership functions were defined for fuzzy sets, among which 

trapezoidal and triangular-shaped ones. Due to the popularity of MATLAB, the method by which 
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fuzzy sets are represented in this software has become traditional, and most papers dete rmining 

the parameters of fuzzy controllers by means of genetic algorithms use it. Thus, a trapezoidal 

membership function is represented with the help of four parameters, marked a, b, c and d, with 

the mathematical expression (2) and shape illustrated in Figure 5: 
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where 

a<b≤c<d (3) 

 

 
This representation is useful when we do the calculations required to determine the value of the 

output size of the controller or when we graphically represent memberships functions. However, it 

is not helpful when we apply the specific operations of the genetic algorithm because we need to 

introduce a number of restrictions where in the case of both mutation and crossover, so that for 

the resulting individuals relationship (3) is maintained, which burdens and slows down the genetic 

algorithm. We implemented this method of representation by means of the structure termed 

cromozom: 
struct cromozom 
{ double parammfx[5][4];  /* parameters for the 5 memberships functions of x */ 
 double parammfphi[7][4];   /* parameters for the 7 memberships functions of phi*/ 
 double parammfteta[7][4];  /* parameters for the 7 memberships functions of theta*/ 
 int typeand, typeor, typeimplication, typeagregation, typedefuzz, rules[5][7] ; 
}; 

 

3.1.2 Our own representation of trapezoidal membership functions  

 

We implemented the representation of trapezoidal membership functions as follows:  

 for the membership functions for x 9 real parameters:   

o 3 values representing the ratio between the larger base of the trapezium and the 

average value of the universe of discourse – a value within the range [0.25 ; 2.0] 

for variables CE, RC and RI.  

o 2 values representing the percentage of the larger base of the trapezium 

overlapping the larger base of the trapezium placed on its left - a value within the 

range [0.05 ; 0.4] for pairs CE and RC, and respectively RC and RI 

 

Figure 5. Trapezoidal membership function. 
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o 3 values representing the ratio smaller base/larger base – a value within the range 

[0.01; 0.65] for CE, RC and RI. 

o a value representing the position of the smaller base for CE – a value within the 

range [0.05 ; 0.95] out of the available interval calculated depending on the large 

basis for RC (for RI the shape of the function is a rectangular trapezium, and for 

CE the trapezium is isosceles). 

 13 real parameters that are determined in a similar manner, but adding one value to each 

parameter to represent the functions for the other two variables (φ and θ). 

The advantage of this representation is that, regardless of the method chosen for the operation of 

mutation or crossover, the resulting values will belong to the intervals considered, so no further 

validation tests are needed. In our application, we used a structure called cromozom2 

corresponding to this way of representation: 
struct cromozom2 
{ int typeand, typeor, typeimplication, typeagregation, typedefuzz, rules[5][7] ; 
 /* memberships functions for x*/ 
 double rapx[3];  /* ratio larger base / average value of the universe of discourse */ 
 double suprax[2]; /* percentage of the overlapping of larger bases: 0.05-0.4 */ 
 double procx[3]; /* ratio smaller base/larger base: 0.05-0.65*/ 
 double pozrelx;  /* position of the smaller: 0.05-0.95 */ 
 double rapphi[4], supraphi[3], procphi[4], pozrelphi2,pozrelphi1; /*rapphi1 results */ 

double raptheta[4], supratheta [3], proctheta [4], pozreltheta2,pozreltheta1;  
}; 
 

3.1.3 Conversion from our own representation of transfer functions in their traditional form  

In our application, we used our own representation for the operations that are specific to the 

genetic algorithm, whereas for simulating fuzzy controllers, for the graphic representation and for 

the output files generated by the application, we used the traditional form. It was necessary to 

implement a function converted into the traditional. For reasons of space, we only present the 

conversion for member functions of input x (those for φ and θ are similar). 

struct cromozom conversie(struct cromozom2 c2, double xmin, double xmax, double phimin, double 
phimax, double tetamin, double tetamax) 

{ struct cromozom c1; 
 double bazamare[7], a[7][4], bazamica; int i,j; 
 c1. typeand = c2. typeand; c1. typeor = c2. typeor; c1. typeimplication = c2. typeimplication; 
 c1. typeagregation = c2. typeagregation; c1. typedefuzz = c2.typedefuzz; 
    for (i=0;i<5;i++)  
  for (j=0;j<7;j++) 
   c1.rules[i][j] = c2.rules[i][j]; 
 double medianax = (xmax + xmin)/2; double mediax = (xmax - xmin) / 5; 
 c1.parammfx [2][3] = medianax + mediax * c2.rapx[0] / 2;     /* CE */ 
 c1.parammfx [2][2] = medianax + c1.parammfx [2][3] * c2.procx[0]; 
 c1.parammfx [2][0] = medianax - c1.parammfx [2][3]; 
 c1.parammfx [2][1] = medianax - c1.parammfx [2][2]; 
 bazamare[2] = a[2][3] - a[2][0]; 
 c1.parammfx [4][0] = xmax - mediax * c2.rapx[2];     /* RI */ 
 bazamare[4] = xmax - c1.parammfx [4][0]; 
 c1.parammfx [4][1] = xmax - bazamare[4] * c2.procx[2]; 
 c1.parammfx [4][2] = xmax + xmax/4; 
 c1.parammfx [4][3] = xmax + xmax/2; 
 c1.parammfx [3][0] = c1.parammfx [2][3] - bazamare[2] * c2.suprax[0];   /* RC */ 
 c1.parammfx [3][3] = c1.parammfx [4][0] + bazamare[4] * c2.suprax[1]; 
 bazamica = (c1.parammfx [3][3] - c1.parammfx [3][0]) * c2.procx[1]; 
  c1.parammfx [3][1] = c1.parammfx [3][0] + (c1.parammfx [3][3] - c1.parammfx [3][0] - bazamica) * 

c2.pozrelx; 
 c1.parammfx [3][2] = c1.parammfx [3][1] + bazamica; 
 for (i=0;i<=1;i++)          /* LE(i=0) and LC(i=1) */ 
  for (j=0;j<=3;j++) 
   c1.parammfx [i][j] = medianax - c1.parammfx [4-i][3-j]; 
…. 
return c1 ;} 
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3.2 The Genetic Algorithm 

In the genetic algorithm that we have implemented, one chromosome is a controller and 

it is a structure comprising a matrix with five rows and seven columns of integers values, 5 

integer values and 35 real values that correspond to the parameters described in the previous 

paragraph. The genetic algorithm attempts to determine the optimum values of all these 75 

parameters. 

Input data: 

for the fuzzy controller: the length and speed of the truck, the minimum and maximum 

values for x, y, φ,  θ and  set of fuzzy rules; 

for the proper genetic algorithm: the number of ages, the number of chromosomes, the 

selection method (we have implemented three methods: Monte Carlo , “Tournament”, and 

Michalewicz [5]), the probability of crossover, the probability of selecting a chromosome for 

the mutation, the probability of mutation for a gene, the number of tests for the fitness of 

chromosome and the three state variables x0, y0 and φ0 for each test. To assess a 

chromosome, we have simulated its route from the initial position to its final position (xf, yf, 

φf),  and we compute the fitness using the following function:    

 

 

 (4)  

 

 

Since the aim of the controller is to bring the truck to the coordinates point (0, 0, π/2), 

the function we have used is a penalizing one in relation to each of the three parameters that 

characterize the final state of the controlled system: the lower the value of the function, the 

better the chromosome. 

Output data: the average performance of the population and the performance of the best 

chromosome following each generation; the parameters of all the controllers represented by 

the last generation chromosomes. 

The implemented algorithm: 

 

 

 

1. Read initial data 

2. Initialize the parallel work mode 

3. If the process is root then 

Randomly generate the initial population 

4. For each age do 

5.    If the process is root then 

6.     For id1, nr_procs do 

7.           Send to the id process the data needed to assess the id chromosome 

8.      For id1, nr_procs do 

9.           Receive fitness value calculated for the id process 

10.        Selection; Crossover; Mutation 

11.        If it is the last generation then  

12.             Write the output data              //in text files 

13.   Else                                                   //the process is slave 

14.       Receive the data needed to assess the chromosome 

15.       For each assessment test do 

16.             Compute the fitness  

17.       Send the fitness value calculated at the root 

18. Close the parallel work mode;  

19. Stop 

 

 

 
casestest 

222
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2
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4 Experimental Results 

We wrote the application in the C language, and we have used the mpich2-1.4.1 library for the parallel 
mode. We have run the application on an Intel HPC System, located at Lucian Blaga University, in 
Sibiu, comprising 14 nodes, each equipped with 4 Dual Core Intel Xeon processors. As parameters of 
the genetic algorithm, we have used the following: number of generations = 400, number of 
chromosomes = 200, crossover probability = 0.50, probability of selecting a chromosome for mutation 
= 0.25 and probability of mutation for a gene = 0.05. For the truck, we have chosen the following 
characteristics: length l = 5 m and backing up speed v = 1.4 m/s. The genetic algorithms with the 
parameters thus established were run for 14 randomly generated populations. 

To assess the controllers we have obtained, we have used other 60 items of test data. The best 

controllers obtained in each of the 14 cases have been assessed with these tests. As assessment 

function, we have used the following measure of error from [6]: 
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1

90
15

4.0

i

fifix 

 (5) 

where xfi and φfi  are the values of x and φ in the final state from each of the 60 tests.  

In Table II we present the average error of the best controllers resulted from the Genetic Algorithms 

using the three methods of selection we mentioned above.  

 

Table II: Average error of the best controllers 

 
Initial 

pop. 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Monte-

Carlo  
1.10 1.46 1.41 1.28 1.44 1.21 1.16 0.92 1.27 2.06 1.08 1.27 0.96 0.92 

Tourna-

ment 
0.79 1.21 0.60 1.44 1.05 1.21 1.54 1.21 2.26 0.66 1.29 0.98 0.79 1.04 

“Micale-

wicz” 
1.20 1.02 1.51 1.30 1.31 0.87 2.0 1.23 1.13 0.80 1.38 1.25 0.60 1.29 

 

 

The results of each simulation for these tests were included into one of following three categories [9]: 
Good if ε ≤ 0.4 ; average if ε>0.4 but the controller led the truck to the loading dock (y=0); missed if 
the truck failed to reach the loading dock. Table III presents the number of tests for which the result was 
“good”. The number of “missed” tests was zero for each best controller. 

Table III: Number of “good” tests 

 
Initial 

pop. 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 

Monte-

Carlo  
8 10 8 8 0 6 4 11 6 6 10 8 12 14 

Tourna-

ment 
12 6 30 4 8 13 4 8 0 24 6 14 22 10 

“Micale-

wicz” 
4 12 2 8 8 12 2 7 2 16 8 0 28 6 

 

Fig. 6 illustrates the average fitness of the population that provided the best controller. Fig. 7 

illustrates the fitness of the best chromosome obtained.  
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For 6 of the 60 starting items of test data we have illustrated in figure 8, the trajectories obtained by 
simulating the behavior of the best controller obtained. 

 

The parameters of the best controller obtained are the following: product for fuzzy-AND, maximum 
for fuzzy-OR, product for the fuzzy implication, sum for the aggregation of the fuzzy rules and 
defuzzification using the sub-unitary weighted centroid method. The member functions for this 
controller are those represented in Fig. 2, Fig. 3 and Fig. 4. The Matrix of the Rules is similar to the 
one illustrated in Table I. 

 

5 Conclusion 

We can notice that: 

The genetic algorithm proved its efficiency in all 42 tests we have performed. Thus, the ratio 
between the average fitness of the initial population and the average fitness of the final population 
equaled: 

 18.96 with the “Monte Carlo” method; 

 47.98 with the “Tournament” method; 

 46.03 with the “Micalewicz” method; 

 

Figure 7. Best fitness of the population #3, "Tournament” 

 

Figure 8. Truck trajectories for 6 initial positions obtained with best 

controller 

 

Figure 6. The average fitness of the population #1 

“Tournament” 
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The ratio between the fitness of the best controller of the initial population and the fitness of the best 
controller of the final population equaled: 

 6.29 with the “Monte Carlo” method; 

 8.73 with the “Tournament” method; 

 7.83 with the “Micalewicz” method; 

The best results have been obtained in the case of the algorithms that have used the “Tournament” 
selection method. The error of the best overall chromosome is 0.598 (coresponding to the best 
chromosome obtained from the initial population #3). 
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