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Abstract 

We studied the way in which imperialist competitive algorithms (ICAs) can be adapted to solve 

combinatorial problems. We chose to solve the Travelling Salesman Problem (TSP) (probably the most 

popular NP-complete problem). In the first stage, we combined ICA with other optimization algorithms 

(e.g. 2-opt or greedy algorithms) and conducted approximately 13,000 tests to establish values of ICA 

parameters to ensure optimal behaviour. We then optimized the ICA obtained in the first stage by 

various methods to increase running speed and improve the results obtained. Finally, we tested the 

algorithm to solve 11 reference configurations. We consider that the algorithm obtained had a good 

behaviour: the error obtained for a configuration consisting of over 5,900 cities was 6.54%.  

1 The imperialist competitive algorithm to solve the TSP  

In September 2007, Esmaeil Atashpaz Gargari and Carlos Lucas presented a paper describing a 

new type of evolutionary algorithm drawing from history [10]. Called the “Imperialist 

Competitive Algorithm” (ICA), it has as a model the competition between the imperialist states as 

well as the way they have led the colonizing policy of political and historical events in the 

seventeenth, eighteenth and nineteenth centuries. ICA is part of the category of meta-heuristic 

algorithms based on sets of candidate solutions, also called populations (along with genetic 

algorithms, cluster algorithms, gravitational search algorithms, etc.).  

 

The standard ICA as presented in [10] is the following: 

1. Generate an initial set of countries; 

2. Evaluate each country and determine the imperialist countries; 

3. Occupy the colonies; 

4. Assimilate the colonies; 

5. If a colony has better results than the imperialist country then 

a. Interchange the colony with the imperialist country 

6. The imperialist competition 

a. Compute the performance of the empires 

b. Occupy the weakest colony of the weakest empire by another empire 

c. If the weakest empire has no colonies left then 

7. Remove this empire 
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 8. Revolutions occur in some colonies 

9. If the stopping requirements are met then  

a. Stop 

10. Otherwise 

11. Repeat the algorithm from step 4. 

 

The imperialist country that has the best results following the last iteration is the solution to the 

problem. Initially, the imperialist competitive algorithm was designed to determine the minimum 

or maximum of certain functions with one or several real arguments, hence to determine solutions 

consisting of one or several real numbers. Soon after it was formulated, it started to be applied to 

solving problems having solutions consisting of whole numbers. In the specialist literature [3], 

[8], this type of imperialist competitive algorithm was called “discrete algorithm”. The problems 

that fall into this category may be traditional graph theory problems or various practical 

optimization problems to which solutions with polynomial complexities are not known. Of these, 

the best-known and the one we chose to solve is the “TSP - Travelling Salesman Problem”. We 

consider it no longer necessary to state it. Theoretically, this is the problem of finding a minimum 

cost Hamiltonian cycle in a complete graph in which edges have attached costs. An exact solution 

to this problem can be reached by generating all permutations of the set {1,2,3, ..., n} with 1 fixed 

point and by calculating the corresponding cost; each permutation is a Hamiltonian cycle. As the 

number of these permutations is equal to (n-1)!, this method can only be applied for low values of 

n. TSP is important both theoretically and practically because a number of concrete problems can 

be formulated as TSP; the most numerous examples can be taken from the integrated circuit 

manufacturing industry in which situations with higher values for n (n = 744710) [1], [5] have 

been reported. Various applications can be found in [8]. A pertinent description of the current 

state of the solutions to this problem, including a list of numerous applications, can be found in 

[7]. Of the different variants of the TSP, we chose to solve the one called the symmetric Euclidean 

variant: graph nodes are points in plan, the cost of moving from one node to another is the 

rounded Euclid distance between the two nodes, and this cost does not depend on the moving 

direction. The cost of a cycle is the total distance travelled, and this is the function of evaluating a 

permutation. 

The distinguishing features of a discrete ICA occur while implementing the following operations:  

1.1 Generating the Initial Set 

Each country in the initial set will represent a permutation of the set {1,2,3, ..., n} with 1 fixed 

point. In the applications that we ran, we chose three values for the initial number of countries: 

110, 220 and 550. We chose a generation based on greedy strategies: the second number of the 
permutation (corresponding to the second node) was chosen randomly, then at every step we 
made a list of the x nodes that are closest to the node selected in the previous step and not yet 
visited (this means that the rounded Euclid distances between these x nodes and the previous 
selected node are the smallest). Of these x nodes, the node to be visited in the current step is 

randomly chosen. This eliminates the disadvantage of poor diversity. The behaviour of  the 

algorithm for x1;4 was studied. 

1.2 Assimilation 

This operation is applied to colony countries. It aims to explore the space of solutions in the 

neighbourhood of permutations for which the evaluation function has the best values. Through 

this operation, the parameters that form a colony country are modified so as to converge towards 

parameters that form a metropolitan country. 

21



 

 

AAnn  IImmppeerriiaalliisstt  CCoommppeettiittiivvee  AAllggoorriitthhmm  OOppttiimmiizzeedd  ttoo  SSoollvvee  tthhee  TTrraavveelllliinngg  SSaalleessmmaann  PPrroobblleemm  

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the case of discrete ICAs, in the vast majority of papers that implement this type of algorithm, 

the assimilation operation is performed as follows: we assume that the solution of the problem 

that is solved by ICA consists of n natural numbers, each of these numbers belonging to a given 

finite range. The countries in the algorithm are then combinations of such n natural numbers. Let 

M be a metropolis of the algorithm and C one of its colonies having the following structure:  

 

M : m1 m2 … mp1-1 mp1 … mp2 mp2+1 … mn 

 

C : c1 c2 … cp1-1 cp1 … cp2 cp2+1 … cn 

 

In order to perform the assimilation, two numbers p1 and p2, 1 ≤ p1  ≤ p2  ≤ n are randomly 

generated, and through assimilation, the content of colony C becomes identical to that of 

metropolis M between positions p1 and p2. The values between positions 1 and p1-1 and p2+1 

and n will be those that cannot be found between positions p1 and p2 arranged in the sequence 

they had in permutation C before the assimilation operation: 

 

C′ : c1′  c2′ … cp1-1′ mp1 … mp2 cp2+1′ … cn′ 

 

ci′  1,2,...,n\ mp1, mp1+1 , mp2-1, mp2 and sign(σ(ci)-σ(cj)) = sign(σ′ (ci)-σ′ (cj))  

where σ and σ′ denote the bijective functions corresponding to permutations C and C′, and 

i,j1,2,...,n\p1,..,p2. 

The complexity of the assimilation operation having this form is (n), provided that the affiliation 

of a value to set  mp1, mp1+1 , mp2-1, mp2 should be verified in (1) (which is possible if a 

suitable data structure is used – e.g. a one-dimensional array having the role of a “marker vector”: 

practically, if we note this structure with a, then a[i] = 1 if  

i   mp1, mp1+1 , mp2-1, mp2, and a[i]=0 if i   mp1, mp1+1 , mp2-1, mp2 

1.3 The Revolution Operation in Discrete ICA 

We implemented this operation by applying the 2-opt algorithm outlined in [2] in order to 

rearrange the values of a permutation representing a country. According to this algorithm, for 

each pair of nodes i and j, i,j1,2,...,n and i<j, we test whether, by replacing a cycle 

corresponding to the permutation of arcs (i,i+1) and (j,j+1) with arcs (i,j) and (i+1,j+1), a smaller 

length circuit is obtained, and, if so, the circuit actually changes. We should note that nodes 

i+1,i+2,...,j-1 are covered in the same sequence but in reverse order (see Figure 1). This allows for 

a quick calculation of the cost of the cycle that would result from this replacement. The structure 

of a country changes according to this algorithm only if the length of the resulting cycle is 

smaller. The advantage of applying the method is that very good results are obtained from the 

very first iterations. The disadvantage is the high probability that the algorithm might lock into a 

local optimum (usually a value close to the global optimum). The 2-opt algorithm has complexity 

(n2). The whole ICA will have the following complexity: 

 (no_iterations_maximum*no_countries*n2) (1) 
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Figure 1-2: opt algorithm 

 
The other operations typical of ICA were implemented according to the formulae presented in 

numerous articles (e.g. [5]). 

2 Sensitivity Analysis on ICA parameters  

At the beginning of the tests, we intended to set values for the ICA parameters as well as the 

implementation variant of the operation of generating the initial set of countries that would 

determine the optimal behaviour of the algorithm. 

The parameters that we aimed to determine were the following: the size of the initial set (nrt), the 

revolution rate (rr), the approach step used in assimilation operation (p) and the weight with 

which a colony contributes to the value of an empire’s performance (w). Taking into consideration 

the findings of various papers ([3], [8], [9], [10]), we chose the following sets of values out of 

which we aimed at selected the value that is the most suitable for these parameters:   

• 110, 220, 550 for nrt; 

• {4% , 10%} for rr; 

• {1 , 3} for p; 

• {0.1 , 0.01} for w; 

Regarding the method of generating the initial set, we considered four variants based on the 

algorithm described above in Section 1.1 (x = 1, 2, 3 or 4). 

 

We considered all combinations of these parameters and methods and obtained 96 variants of 

ICA. For a better appreciation, each of these variants was run for 25 initial sets.  

The maximum number of iterations was set at 2000. 

We conducted tests for eight configurations, an intrinsic one with 13 nodes and seven reference 

configurations (downloaded from [4]) with 29, 52, 76, 100, 152, 225 and 442 nodes). 
The tests performed indicated the following: 

a) The greedy generation algorithm with x=1 provides the best top and average performance;  

b) The parameters influencing the performance obtained were the following: 

• The revolution rate: a higher value results in better performance;  

• The number of countries in the initial set: the performance increases slowly with the 

increase in the number of countries; 

• The extent to which a colony contributes to the performance value of an empire, w, results 

in better performance if it is low: w = 0.01. 

The runtime for the most knotted configuration (442) averaged 9.6 minutes for an initial set of 

110 countries, 10.2 minutes for an initial set of 220 countries and 11.2 minutes for an initial set of 

550 countries on a computer equipped with an Intel Core i3 microprocessor at 2.93 GHz.  
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Table 1 shows the results obtained: minL represents the best performance provided by one of 

the 25 initial sets and avrL represents the average performance of the 25 sets. 

 

configuration minL avrL  configuration minL avrL 

c13 51 51.0  kroA100 21282 21395.3 

so29 27603 27603.0  pr152 73682 74135.3 

berlin52 7542 7542.0  tsp255 3997 4050.6 

pr76 108280 108786.8  d442 52123 52691.9 

Table 1: Results obtained by means of the initial variant of ICA 

 

3 Improving the combined algorithm ICA – 2-opt 

3.1 Increasing algorithm performance through revolutions 

The 2-opt algorithm is very powerful, but it is obvious that if we apply it to the same permuta tion 

the second time, its effect will be null. On the other hand, as ICAs run, the potential solutions we 

work with (the “countries”, in the ICA terminology) are “attracted” to some of the best -

performing permutations. This will cause the algorithm to stagnate after a fairly small number of 

iterations. For example, in the 25 tests performed for the 442-node configuration, the average of 

the last iterations whose lowest cost of a permutation was improved to 636.3.  

This observation led us to the idea of improving the performance of the algorithm by 

modifying the revolution operation: we applied the 2-opt algorithm to 75% of the permutations 

selected for the revolution, while for the remaining 25% we performed the revolution operation by 

randomly interchanging some of the elements of the permutations. 

The results obtained are presented in Table 2: ICA1 is the initial algorithm and ICA2 is the 

one with the modification of the implementation of the revolution operation.  

 

configuration ICA1 ICA2 

minL avrL minL avrL 

so29 27603 27603.0 27603 27603.0 

berlin52 7542 7542.0 7542 7542.0 

pr76 108280 108786.8 108159 108293.1 

kroA100 21282 21395.3 21282 21314.8 

pr152 73682 74135.3 73682 73869.6 

tsP255 3997 4050.6 3962 3997.7 

d442 52123 52691.9 52128 52595.3 

Table 2: The effect of the optimization of the revolution  

The best behaviour of the ICA2 algorithm for all 8 configurations is evident.  

3.2 Reducing the runtime 

ICA2 had runtimes of approximately 1.11 hours for 1000-node configurations; a theoretical 

calculation indicates the value of 111 hours for configurations of 10,000 nodes, which represents 

a too long runtime. As a result, we aimed to reduce the runtime in various ways:  
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 3.2.1   Software optimization (by means of programming techniques) 

This optimization started from the observation made at the beginning of the Section 3 (i.e. if a 

permutation does not change by applying the 2-opt algorithm, then as long as the permutation 

does not change by other operations in ICA, there is no point in applying the 2-opt optimization). 

Hence, we use a one-dimensional array (array) in which we have marked, for each permutation 

(country), whether or not it was modified or not by applying the operations typical of ICA 

(assimilation or revolution). In doing so, we avoided the redundant testing of numerous 

permutations by the 2-opt algorithm. Table 3 shows the average number of permutations (denoted 

avrnbP) to which the 2-opt procedure was applied in the initial version (ICA2) and in the 

optimized variant (ICA3), as well as the average runtimes (avrT) in the above-mentioned system 

for the largest two configurations that we used in the tests performed up to that point. Obviously, 

the minimum lengths determined by applying the two variants of the algorithm are the same.  

 

  

 

 

 

 

3.2.2 Optimization by increasing convergence speed  

The convergence speed of the algorithm can be increased by using a variable weight for each 

colony that contributes to the performance of the metropolis empire. The variation principle of 

this parameter is that described in [9]. Thus, the algorithm we proposed for consideration 

computes the performance of the empires (step 6.a from the algorithm described in Section 1) 

using the formula: 

  
colonyrezultonyweight_col t_country imperialisresults_   pireresults_em _

 (2)  

where the result of a country is the distance travelled following the cycle induced by the 

permutation (each country represents a permutation).  

We assigned to each colony a weight that is initially equal to 0.01. Nevertheless, each time a 

colony changes imperialist country, the value of the weight of that colony is diminished 

multiplying it by 0.75. 

 

Table 4 shows the results of ICA with variable weight (ICA4) compared to the results 

obtained for ICA with constant weight (ICA3). In the tests conducted, the vm1084 configuration 

with 1084 nodes was also used, downloaded from[4]: 

 

configuration ICA3 ICA4 

 minL avrL avrnbIt minL avrL avrnbIt 

pr152 73682 73869.6 2000 73682 73829.3 1269 

tsp225 3962 3997.7 2000 3931 3958.5 1429 

d442 52128 52595.3 2000 52022 52281.2 1689 

vm1084 251125 251403.0 2000 248263 249203.2 1993 

Table 4: ICA4 with variable weight vs. ICA3 variable weight 

 

 ICA2 ICA3 

configuration avrnbP avrT (s) avrnbP avrT (s) 

tsp225 68816 1257 36322 199 

d442 91583 1402 39459 745 

Table: 3  The effect of the software optimization of the algorithm 
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3.2.3  Hardware optimization (by using a super-computer)  

Like other evolutionary algorithms based on candidate solution sets, ICA contains an intrinsic 

parallelism in various stages, for example in the evaluation stage of these candidate solutions. 

When using a number of np processors, the complexity of the algorithm is as follows:  

 )n*
np
nrt*O(nritemax 2

      
(3) 

The master process and slave processes communicated through the MPI_Send and MPI_Recv 

functions in the mpi.h library. Table 5 shows the average runtimes obtained with the help of this 

computer for various configurations as well as the average runtimes by using a computer equipped 

with a single Intel Core i3 2.93 GHz processor. 

 

 Average runtime (s) Ratio  

timePC/timeHPC configu-

ration 

PC Intel 

Core i3 

Intel HPC 

System 

tsp225 195 88.2 2,2 

d442 688 137.7 5.0 

vm1084 4206 375.1 11.2 

Table 5: Average runtime for various configurations 

 

Although the effort to rewrite ICA for a parallel computer is not very substantial, the use of such a 

computer has an important disadvantage: access is quite problematic. For example, the HPC 

located at LBU Sibiu was not functional for rather long periods of time. 

4 Final results obtained by running an optimized ICA 

An ICA having the parameters and optimizations described above was run for different 

configurations, using other 10 sets of 550 countries. Table 6 shows the results obtained.  

represents the efficiency of the algorithm and is an expression that indicates the percentage in 

which the algorithm improved the minimum length obtained during the first iteration of the 

algorithm. BKS represents the best known result for that configuration, drawn from [4]; err is the 

error (in percentage) of the best result compared to the BKS. 

 

configuration minL avrL avrT (s) % BKS err 

so29 27603 27603.0 12.2 5.41 27603 0.00 

berlin52 7542 7542.0 17.8 5.42 7542 0.00 

pr76 108159 108194.8 67.6 8.34 108159 0.00 

kroA100 21282 21297.7 47.5 8.71 21282 0.00 

pr152 73682 73758.2 40.3 4.07 73682 0.00 

tsp225 3931 3958.5 77.6 12,8 3916 0.38 

d442 52022 52281.2 125,0 10,6 50778 3.62 

vm1084 248263 249203.2 375,1 10,3 239297 3.74 

fl1400 20456 20531.9 548.2 8.64 20127 1.63 

d2103 81716 81983.8 761.4 6.88 80450 1.57 

rl5915 602564 606257.6 4559.4 6,19 565530 6,54 

 

Figure 1 illustrates how the number of colonies originally held by 50 empires varied in a test 

performed on a 442-node configuration. We note the convergence of the algorithm that ends after 

1796 iterations through the capturing of all colonies by a single empire and the implicit 

disappearance of the other empires. 
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Figure 1: Number of colonies held by the empires of the algorithm dependent on the iteration 

 

Figures 2 and 3 illustrate the evolution of the solution determined by the algorithm for various 

configurations. The optimum circuits determined during the first iteration, halfway through the 

number of iterations and at the end, are presented. 

 

   
 

Figure 2: Evolution of the optimal circuit determined by ICA for the kroA100 configuration 

 

   
 

Figure 3: Evolution of the optimal circuit determined by ICA for the tsp225 configuration 
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5 Conclusions 

ICA can be used to solve problems with solutions consisting of a string of natural numbers. The 

main feature of applying an ICA to this type of problem is that the implementation modalities for 

some of the characteristic operations differ depending on the actual problem to be solved. Discrete 

ICA performance can be greatly improved by its combination with other optimization algorithms, 

such as greedy strategies to generate the initial set of countries, or by implementing specific 

operations. Through various software and hardware methods, we improved the solutions and 

reduced the runtimes. 
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