

FFiifftthh IInntteerrnnaattiioonnaall CCoonnffeerreennccee
MMooddeelllliinngg aanndd DDeevveellooppmmeenntt ooff IInntteelllliiggeenntt SSyysstteemmss
JJuunnee 2233 -- 2255,, 22001177

““LLuucciiaann BBllaaggaa”” UUnniivveerrssiittyy

SSiibbiiuu -- RRoommaanniiaa

Tuning Extreme Learning Machines with genetic algorithms

Florin Stoica, Alina Bărbulescu, Laura Florentina Stoica

Abstract

In this paper we propose a method of optimizing the predictions made with Extreme Learning

Machines (ELM) by optimizing their structure. The method is based on generic algorithms to

determine the optimal number of hidden nodes and also to determine the appropriate activation

function. In our study the ELMs are optimized through the Breeder genetic algorithm aiming to

minimize the prediction error for the sum of permanent premolars and canines dimensions from a

group of 92 Romanian young people. A comparison is made with predictions obtained by multiple

linear regression equations (MLRE).

1 Introduction

H.A.Boboc [4] developed multiple linear regression equations (MLRE) that investigates the

relationship between the size of canine-premolar group and mesiodistal size of other teeth. The

estimation of the mesiodistal size of permanent canine and of the two premolars before their

eruption is important for early evaluation of the need for space in this area and represents an

important part of diagnosis and orthodontic treatment strategy.

Our paper aims to verify if the Extreme Learning Machines with their structure optimized through

genetic algorithms can improve the accuracy of the predictions provided by the original method

based on MLRE.

A representative public school with a population of 321 children ages 12-15 years from Sibiu

(Romania) was selected for this study. From these subjects, a random simple technique was used

to select 92 students (47 females and 45 males) fulfilling the selection criteria:

 To have the parents' written consent to participate in the study;

 To present the dental arches fully erupted permanent teeth (molars 3 was not

considered);

 The erupted teeth show no abnormalities of shape, size or structure;

 The teeth must not have missing of substance in the mesiodistal size, due to decay,

trauma or orthodontic treatments have provided striping [8].

The measure tooth size models we used a digital calliper manufactured by Mega (Germany) with

an accuracy of 0.01 mm. All models were measured 2 times by the same author and the result

used was the average of two values.

For estimation the size of the unerupted canines and premolars, a recently multiple linear regression

proposed equation [4] is based on known variables 21, 42 and 46. The form of this equation is: Y = X1

x A1 + X2 x A2 + X3 x A3 + A, where:

 Y is the outcome expected;

72

FFlloorriinn SSttooiiccaa,, AAlliinnaa BBăărrbbuulleessccuu,, LLaauurraa FFlloorreennttiinnaa SSttooiiccaa

 X1, X2, X3 are independent variables determined by the size of teeth 42, 46, 21;

 A1, A2 and A3 are regression coefficients for used teeth;

 A is a specific constant.

The values of constant A and regression coefficients of the equation are presented in Table 1:

Canines

premolars

group

Constant

A

A1

(42)

A2

(46)

A3

(21)

Maxillary 6,563 0,822 0,595 0,411

Mandible 3,350 0,872 0,710 0,538

Table 1: Parameters of multiple linear regression equation used [4]

In the following is presented our approach to provide a more accurate method for prediction of the

mesiodistal width of unerupted permanent canines and premolars, using Extreme Learning

Machines.

2 Extreme Learning Machines – fundamental concepts

Due to their remarkable efficiency, simplicity, and impressive generalization performance, ELMs

have been applied in a variety of domains, such as control and robotics, computer vision, system

identification, classification and regression.

The learning speed of feedforward neural networks is in general far slower than required and it

has been a major bottleneck in their applications for past decades (the slow gradient-based

learning algorithms are extensively used to train neural networks). Moreover, usually the

parameters of the networks are tuned iteratively by using such learning slower algorithms.

Huang et al proposes a new learning algorithm called extreme learning machine (ELM) for single -

hidden layer feedforward neural networks (SLFNs) [1].

In [1] is proved that the input weights and hidden layer biases of SLFNs can be randomly assigned

if the activation functions in the hidden layer are infinitely differentiable. SLFNs can be simply

considered as a linear system and the output weights (linking the hidden layer to the output layer)

of SLFNs can be analytically determined through Moore–Penrose generalized inverse operation of

the hidden layer output matrices.

For N arbitrary distinct samples (), where []

 and

[]

 standard SLFNs with ̃ hidden nodes and activation function g(x)

are mathematically modeled as:

∑ ()
 ̃

j = 1, . . . ,N where:

- []

 is the weight vector connecting the ith hidden node

and the input nodes;

- []

 is the weight vector connecting the ith hidden node

and the output nodes;

- is the threshold of the ith hidden node;

That standard SLFNs with ̃ hidden nodes with activation function g(x) can approximate these N

samples with zero error if ∑ ‖ ‖

= 0

73

TTuunniinngg EExxttrreemmee LLeeaarrnniinngg MMaacchhiinneess wwiitthh ggeenneettiicc aallggoorriitthhmmss

In other words there exist and such that:

 ∑ ()
 ̃
 , j = 1, . . . ,N

The above N equations can be written as

 H = T

where H is called the hidden layer output matrix of the neural network [2] and can be described

as follows:

H (̃ ̃) =

=

[

 () (̃ ̃)

 () (̃ ̃)]

 ̃

and respectively T are matrices of form:

 [

 ̃

]

 ̃

 and [

]

The ith column of H is the ith hidden node output with respect to inputs .

The input weights and the hidden layer biases are in fact not necessarily tuned and the

hidden layer output matrix H can actually remain unchanged once random values have been

assigned to these parameters in the beginning of learning.

For fixed input weights and the hidden layer biases , to train an SLFN is simply equivalent

to finding a least squares solution ̇ of the linear system H = T.

In most cases the number of hidden nodes is much less than the number of distinct training

samples ̃ , H is a nonsquare matrix and there may not exist , , such that

The smallest norm least squares solution of the above linear system is:

 ̇ =

where is the Moore–Penrose generalized inverse of matrix H i.e.

H H = H
 H =
(H)T=H
(H)T= H

 can be calculate using the singular value decomposition (SVD) method [6].

3 Tuning ELMs with Breeder genetic algorithm

The Breeder genetic algorithm, proposed by Mühlenbein and Schlierkamp-Voosen [3] represents

solutions (chromosomes) as vectors of real numbers, much closer to the reality than normal GAs.

The selection is achieved randomly from the T% best elements of current population, where T is a

constant of the algorithm (usually, T = 40 provide best results).

74

FFlloorriinn SSttooiiccaa,, AAlliinnaa BBăărrbbuulleessccuu,, LLaauurraa FFlloorreennttiinnaa SSttooiiccaa

Within each generation, from the T% best chromosomes are selected two elements, and the

crossover operator is applied over them.

On the new child obtained from the mate of the parents is applied the mutation operator. The

process is repeated until are obtained N-1 new individuals, where N represents the size of the

initial population. The best chromosome (evaluated through fitness function) is inserted in the

new population (1-elitism). Thus, the new population will have also N elements.

3.1 The Breeder genetic operators

3.1.1 Crossover

Let be } x..., , x,{xx n21 and }y ..., ,y ,{yy n21 two chromosomes, where Rxi and niRyi ,1, .

The crossover operator has a result a new chromosome, whose genes are represented by values

)(iiiii xyxz , ni ,1 , where i is a random variable uniformly distributed between

 1, , and depends on the problem to be solved, typically in the interval]5.0,0[.

3.1.2 Mutation

The probability of mutation is typically selected as n/1 . The mutation scheme is given by

niarsxx iiiii ,1, where: }1,1{ is uniform at random, ir is the range of variation for ix ,

defined as
ixi domainrr , where r is a value in the range between 0.1 and 0.5 (typically 0.1) and

ixdomain is the domain of the variable ix and k
ia 2 where]1,0[uniform at random and k is

the number of bytes used to represent a number in the machine within is executed the Breeder

algorithm (mutation precision).

3.2 The Breeder genetic algorithm

With the operators described in the previous section, the Breeder algorithm can be described as

follows [7]:

Procedure Breeder
begin

t = 0

Randomly generate an initial population P(t) of N individuals

while (termination criterion not fulfilled) do

 Evaluate P(t) using the fitness function

 for i = 1 to N-1 do

 Randomly choose two elements from the T% best elements of P(t)

 Apply the crossover operator

 Apply the mutation operator on the child

 Insert the result in the new population P’(t)

 end for

 Choose the best element from P(t) and insert it into P’(t)

 P(t+1) = P’(t)

 t = t + 1

end while

end

3.3 Tuning parameters of ELM

The aim of the Breeder genetic algorithm is to find optimal values for the parameters of the ELM (the

number of hidden nodes ̃ and the activation function g). Each chromosome contains two genes,

representing values associated with modeled variables. The fitness function for chromosomes

evaluation is represented by the train error of the represented ELM on train data sets.

75

TTuunniinngg EExxttrreemmee LLeeaarrnniinngg MMaacchhiinneess wwiitthh ggeenneettiicc aallggoorriitthhmmss

In our tests, parameters of Breeder algorithm are assigned with following values: , r = 0.1,

a = 0.1 and k = 8 . The initial population has 100 chromosomes and algorithm is stopped after

100 generations.

Data provided by our study models was randomly divided in two sets: the training set, containing

50 cases and the validation set, composed by 42 study models (the data comes from 92 children

ages 12-15 years fulfilling the selection criteria).

For the ELM, we chose between two activation functions, „sig” and „sin”.

The original implementation of the elm-java tool can be found at

http://www3.ntu.edu.sg/home/egbhuang/elm_codes.html [5].

3.4 Results

Using the data from training set, the Breeder algorithm has determined as optimal values for ELM

parameters the “sig” as activation function and 15 as optimal value for the number of hidden nodes

 ̃.

Figure 1: Training and prediction errors for ELM with ̃

76

FFlloorriinn SSttooiiccaa,, AAlliinnaa BBăărrbbuulleessccuu,, LLaauurraa FFlloorreennttiinnaa SSttooiiccaa

Figure 2: Training and prediction errors for ELM with ̃

77

TTuunniinngg EExxttrreemmee LLeeaarrnniinngg MMaacchhiinneess wwiitthh ggeenneettiicc aallggoorriitthhmmss

Figure 3: Training and prediction errors for ELM with ̃

Figure 4: Training and prediction errors for ELM with ̃

78

FFlloorriinn SSttooiiccaa,, AAlliinnaa BBăărrbbuulleessccuu,, LLaauurraa FFlloorreennttiinnaa SSttooiiccaa

In order to evaluate the performance of the proposed approach, we carried out comparisons of results

obtained by the tuned ELM with results provided by other ELMs with empirically established

architecture. Also we made a comparison of the prediction accuracy between the two methods (tuned

ELM vs. Boboc's multiple linear regression equations) using the following performance metrics and

their formula:

 The metric r (Pearson's correlation coefficient) with formula:
1

2 2

1 1

()()

() ()

n

i p i a

i

n n

i p i a

i i

p m a m

p m a m

 The metric RMSE (Root Mean Square Error) with formula: 2

1

1
()

n

i i

i

p a
n

 The metric MSE (Mean Squared Error) with formula: 2

1

1
()

n

i i

i

p a
n

 The metric MAE (Mean Absolute Error) with formula:
1

1
| |

n

i i

i

a p
n

where notations are: pi - predicted data; ai - observed (actual) data; n - number of data; ma - mean of

observed data; mp - mean of predicted data.

The comparison of performances of tuned vs. non-tuned ELMs are presented in Table 2.

 ̃ 10 15 30 50

Training

r 0.6007745 0.6864645 0.7676291 0.8751079

RMSE 0.1580064 0.143725 0.1266738 0.09564912

MSE 0.02496602 0.02065688 0.01604626 0.009148755

MAE 0.127673 0.1103865 0.09795375 0.06541024

Prediction

r 0.5519677 0.7211824 0.09139431 0.5684539

RMSE 0.2272806 0.199109 0.3211489 0.2759233

MSE 0.05165646 0.03964439 0.1031366 0.07613369

MAE 0.1943521 0.1671411 0.2393244 0.2504432

Table 2: Performance comparison with tuned ELM (̃)

Comparing predictions provided by the proposed (ELM) and respectively MLRE method, we can

conclude that the ELM tuned by a Breeder genetic algorithm is capable to provide greater accuracy in

prediction of the mesiodistal width of unerupted teeth as can be seen in the figure 5 and respectively in

table 3.

79

TTuunniinngg EExxttrreemmee LLeeaarrnniinngg MMaacchhiinneess wwiitthh ggeenneettiicc aallggoorriitthhmmss

Figure 5: Comparing prediction errors for the two methods: ELM and MLRE

ELM (15

nodes)

Boboc

(MLRE)

Prediction

r 0.7211824 0.6519263

RMSE 0.199109 0.230186

MSE 0.03964439 0.05298558

MAE 0.1671411 0.1938037

Table 3: Comparing prediction errors (ELM and MLRE) using performance metrics

4 Conclusions

Tuning the ELM using a genetic algorithm provide better results than empirical approach. The fast

learning speed of an Extreme Learning Machine is crucial in obtaining a reasonable time for the

tuning process. After evaluation, we found that our proposed method is providing a better prediction

than original MLRE method. Thus, the prediction error rates of tuned ELM using the Breeder genetic

algorithm are smaller than those provided by the multiple linear regression equations proposed in [4].

We intend to do more tests to be done on large data sets. Also, will be interesting to compare an ELM

with a backpropagation trained neural network in terms of speed and prediction accuracy.

References

[1] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew Extreme learning machine: Theory and applications, Neurocomputing

70 (2006) 489–501

[2] G.-B. Huang, Learning capability and storage capacity of two hidden-layer feedforward networks, IEEE

Trans. Neural Networks, 14 (2) (2003) 274–281.

[3] Mühlenbein H, Schlierkamp-Voosen D, The science of breeding and its application to the breeder genetic

algorithm, Evolutionary Computation, vol. 1, 1994, 335-360

[4] Boboc A, Dibbets J, Prediction of the mesiodistal width of unerupted canines and premolars: a statistical

approach, American Journal of Orthodontics and Dentofacial Ortopedics, 2010, vol 137(4);503-507

[5] Dong Li, Java version of ELM, http://www3.ntu.edu.sg/home/egbhuang/elm_codes.html.

[6] J.M. Ortega, Matrix Theory, Plenum Press, New York, London, 1987.

80

FFlloorriinn SSttooiiccaa,, AAlliinnaa BBăărrbbuulleessccuu,, LLaauurraa FFlloorreennttiinnaa SSttooiiccaa

[7] Stoica F., Simian D., Optimizing a New Nonlinear Reinforcement Scheme with Breeder genetic algorithm,

Proceedings of the 11th International Conference on EVOLUTIONARY COMPUTING (EC'10),13-15

June 2010, Iaşi, Romania, ISSN: 1790-2769, ISBN: 978-960-474-194-6, pp. 273-278

[8] Florin Stoica, Cornel Gheorghe Boitor, Using the Breeder genetic algorithm to optimize a multiple
regression analysis model used in prediction of the mesiodistal width of unerupted teeth, International

Journal of Computers, Communications & Control, Vol 9, No 1, pp. 62-70, ISSN 1841-9836, february

2014, Impact Factor 2014 (JCR2013/Science Edition) 0.694

Florin STOICA

“Lucian Blaga” University of Sibiu
Faculty of Sciences

Mathematics and Informatics Department

Dr. Ion Rațiu St, 5-7 No, Sibiu, 550012
ROMANIA

E-mail: florin.stoica@ulbsibiu.ro

Alina BĂRBULESCU

Higher College of Technology
Sharjah

EMIRATELE ARABE UNITE

E-mail: alinadumitriu@yahoo.com

Florentina Laura STOICA

“Lucian Blaga” University of Sibiu
Faculty of Sciences

Mathematics and Informatics Department

Dr. Ion Rațiu St, 5-7 No, Sibiu, 550012
ROMANIA

E-mail: laura.cacovean@ulbsibiu.ro

81

