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Abstract 

In this paper we propose a method of optimizing the predictions made with Extreme Learning 

Machines (ELM) by optimizing their structure. The method is based on generic algorithms to 

determine the optimal number of hidden nodes and also to determine the appropriate activation 

function. In our study the ELMs are optimized through the Breeder genetic algorithm aiming to 

minimize the prediction error for the sum of permanent premolars and canines dimensions from a 

group of 92 Romanian young people. A comparison is made with predictions obtained by multiple 

linear regression equations (MLRE). 

1 Introduction 

H.A.Boboc [4] developed multiple linear regression equations (MLRE) that investigates the 

relationship between the size of canine-premolar group and mesiodistal size of other teeth. The 

estimation of the mesiodistal size of permanent canine and of the two premolars before their 

eruption is important for early evaluation of the need for space in this area and represents an 

important part of diagnosis and orthodontic treatment strategy. 

Our paper aims to verify if the Extreme Learning Machines with their structure optimized through 

genetic algorithms can improve the accuracy of the predictions provided by the original method 

based on MLRE. 

A representative public school with a population of 321 children ages 12-15 years from Sibiu 

(Romania) was selected for this study. From these subjects, a random simple technique was used 

to select 92 students (47 females and 45 males) fulfilling the selection criteria:  

 To have the parents' written consent to participate in the study; 

 To present the dental arches fully erupted permanent teeth (molars 3 was not 

considered); 

 The erupted teeth show no abnormalities of shape, size or structure; 

 The teeth must not have missing of substance in the mesiodistal size, due to decay, 

trauma or orthodontic treatments have provided striping [8]. 

The measure tooth size models we used a digital calliper manufactured by Mega (Germany) with 

an accuracy of 0.01 mm. All models were measured 2 times by the same author and the result 

used was the average of two values. 

For estimation the size of the unerupted canines and premolars, a recently multiple linear regression 

proposed equation [4] is based on known variables 21, 42 and 46. The form of this equation is: Y = X1 

x A1 + X2 x A2 + X3 x A3 + A, where:  

 Y is the outcome expected; 

72



 

 

FFlloorriinn  SSttooiiccaa,,  AAlliinnaa  BBăărrbbuulleessccuu,,  LLaauurraa  FFlloorreennttiinnaa  SSttooiiccaa  

  

 

  X1, X2, X3 are independent variables determined by the size of teeth 42, 46, 21; 

 A1, A2 and A3 are regression coefficients for used teeth; 

 A is a specific constant. 

The values of constant A and regression coefficients of the equation are presented in Table 1: 

Canines 

premolars 

group 

 

Constant 

A 

A1 

( 42) 

A2 

(46) 

A3 

(21) 

Maxillary 6,563 0,822 0,595 0,411 

Mandible 3,350 0,872 0,710 0,538 

Table 1: Parameters of multiple linear regression equation used [4] 

 

In the following is presented our approach to provide a more accurate method for prediction of the 

mesiodistal width of unerupted permanent canines and premolars, using Extreme Learning 

Machines. 

2 Extreme Learning Machines – fundamental concepts 

 

Due to their remarkable efficiency, simplicity, and impressive generalization performance, ELMs 

have been applied in a variety of domains, such as control and robotics, computer vision, system 

identification, classification and regression.  

The learning speed of feedforward neural networks is in general far slower than required and it 

has been a major bottleneck in their applications for past decades (the slow gradient-based 

learning algorithms are extensively used to train neural networks). Moreover, usually the 

parameters of the networks are tuned iteratively by using such learning slower algorithms. 

Huang et al proposes a new learning algorithm called extreme learning machine (ELM) for single -

hidden layer feedforward neural networks (SLFNs) [1]. 

In [1] is proved that the input weights and hidden layer biases of SLFNs can be randomly assigned 

if the activation functions in the hidden layer are infinitely differentiable. SLFNs can be simply 

considered as a linear system and the output weights (linking the hidden layer to the output layer) 

of SLFNs can be analytically determined through Moore–Penrose generalized inverse operation of 

the hidden layer output matrices. 

For N arbitrary distinct samples (      ), where    [                           ]
 
       and      

[                           ]
 
      standard SLFNs with  ̃ hidden nodes and activation function g(x) 

are mathematically modeled as: 

∑     (          )     
 ̃

   
 

j = 1, . . . ,N where: 

-       [                            ]
 
   is the weight vector connecting the ith hidden node 

and the input nodes; 

-        [                              ]
 

  is the weight vector connecting the ith hidden node 

and the output nodes; 

-        is the threshold of the ith hidden node; 

 

That standard SLFNs with  ̃  hidden nodes with activation function g(x) can approximate these N 

samples with zero error if ∑ ‖      ‖ 
 

 
    

= 0 
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In other words there exist          and     such that: 

 ∑     (          )     
 ̃
   ,  j = 1, . . . ,N 

 

The above N equations can be written as  

  H   = T  

 

where H is called the hidden layer output matrix of the neural network [2] and can be described 

as follows: 

 

H (                ̃                  ̃                    ) =   

= 

[
 
 
 
 
 
  (         )                                             (  ̃       ̃)

                                                                          

                                                                          

                                                                          

 (         )                                             (  ̃       ̃)]
 
 
 
 
 
 

    ̃ 

               

 

and   respectively T are matrices of form: 

 

                     [
  
 

 
  ̃
 
]

 ̃  

           and     [
  
 

 
  
 
]

   

 

 

The ith column of H is the ith hidden node output with respect to inputs                         . 

The input weights      and the hidden layer biases    are in fact not necessarily tuned and the 

hidden layer output matrix H can actually remain unchanged once random values have been 

assigned to these parameters in the beginning of learning. 

 

For fixed input weights    and the hidden layer biases   , to train an SLFN is simply equivalent 

to finding a least squares solution  ̇ of the linear system H   = T. 

In most cases the number of hidden nodes is much less than the number of distinct training 

samples  ̃    , H is a nonsquare matrix and there may not exist    ,   ,    such that        

The smallest norm least squares solution of the above linear system is:  

    ̇ =      

where    is the Moore–Penrose generalized inverse of matrix H i.e. 

H  H = H 
  H  =   
(H  )T=H   
(  H)T=  H 
 
   can be calculate using the singular value decomposition (SVD) method [6]. 

3 Tuning ELMs with Breeder genetic algorithm 

The Breeder genetic algorithm, proposed by Mühlenbein and Schlierkamp-Voosen [3] represents 

solutions (chromosomes) as vectors of real numbers, much closer to the reality than normal GAs. 

The selection is achieved randomly from the T% best elements of current population, where T is a 

constant of the algorithm (usually, T = 40 provide best results).  
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Within each generation, from the T% best chromosomes are selected two elements, and the 

crossover operator is applied over them.  

On the new child obtained from the mate of the parents is applied the mutation operator. The 

process is repeated until are obtained N-1 new individuals, where N represents the size of the 

initial population. The best chromosome (evaluated through fitness function) is inserted in the 

new population (1-elitism). Thus, the new population will have also N elements. 

 

3.1 The Breeder genetic operators 

3.1.1   Crossover  

Let be } x..., , x,{xx n21  and }y ..., ,y ,{yy n21  two chromosomes, where Rxi  and niRyi ,1,  . 

The crossover operator has a result a new chromosome, whose genes are represented by values 

)( iiiii xyxz   , ni ,1 , where i  is a random variable uniformly distributed between 

   1, , and  depends on the problem to be solved, typically in the interval ]5.0,0[ .  

3.1.2   Mutation 

The probability of mutation is typically selected as n/1 . The mutation scheme is given by

niarsxx iiiii ,1,   where: }1,1{ is  uniform at random, ir  is the range of variation for ix , 

defined as 
ixi domainrr  , where r  is a value in the range between 0.1 and 0.5 (typically 0.1) and 

ixdomain  is the domain of the variable ix  and  k
ia 2  where ]1,0[  uniform at random and k is 

the number of bytes used to represent a number in the machine within is executed the Breeder 

algorithm (mutation precision). 

3.2 The Breeder genetic algorithm 

With the operators described in the previous section, the Breeder algorithm can be described as 

follows [7]: 

 

Procedure Breeder 
begin 

t = 0 

Randomly generate an initial population P(t) of N individuals 

while (termination criterion not fulfilled) do 

     Evaluate P(t) using the fitness function 

     for i = 1 to N-1 do 

         Randomly choose two elements from the T% best elements of P(t) 

         Apply the crossover operator 

         Apply the mutation operator on the child 

         Insert the result in the new population P’(t) 

     end for 

     Choose the best element from P(t) and insert it into P’(t) 

     P(t+1) = P’(t) 

     t = t + 1 

end while 

end 

 

3.3 Tuning parameters of ELM 

The aim of the Breeder genetic algorithm is to find optimal values for the parameters of the ELM (the 

number of hidden nodes  ̃ and the activation function g). Each chromosome contains two genes, 

representing values associated with modeled variables. The fitness function for chromosomes 

evaluation is represented by the train error of the represented ELM on train data sets. 
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In our tests, parameters of Breeder algorithm are assigned with following values:     ,  r = 0.1, 

a = 0.1  and k = 8 . The initial population has 100 chromosomes and algorithm is stopped after 

100 generations. 

Data provided by our study models was randomly divided in two sets: the training set, containing 

50 cases and the validation set, composed by 42 study models (the data comes from 92 children 

ages 12-15 years fulfilling the selection criteria). 

For the ELM, we chose between two activation functions, „sig” and „sin”. 

The original implementation of the elm-java tool can be found at 

http://www3.ntu.edu.sg/home/egbhuang/elm_codes.html [5]. 

3.4 Results 

Using the data from training set, the Breeder algorithm has determined as optimal values for ELM 

parameters the “sig” as activation function and 15 as optimal value for the number of hidden nodes 

 ̃. 

 

 
Figure 1: Training and prediction errors for ELM with  ̃     
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Figure 2: Training and prediction errors for ELM with  ̃     
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Figure 3: Training and prediction errors for ELM with  ̃     

 

 

 
 

 
Figure 4: Training and prediction errors for ELM with  ̃     
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In order to evaluate the performance of the proposed approach, we carried out comparisons of results 

obtained by the tuned ELM with results provided by other ELMs with empirically established 

architecture.  Also we made a comparison of the prediction accuracy between the two methods (tuned 

ELM vs. Boboc's multiple linear regression equations) using the following performance metrics and 

their formula: 

 The metric r (Pearson's correlation coefficient) with formula:  
1
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 The metric RMSE (Root Mean Square Error) with formula: 2

1

1
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 The metric MSE (Mean Squared Error) with formula:  2
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n
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 The metric  MAE (Mean Absolute Error) with formula: 
1

1
| |

n

i i

i

a p
n 

  

 

where notations are: pi - predicted data; ai - observed (actual) data; n - number of data; ma - mean of 

observed data; mp  - mean of predicted data. 

 
 

The comparison of performances of tuned vs. non-tuned ELMs are presented in Table 2. 

 

   ̃ 10 15 30 50 

Training 

r 0.6007745 0.6864645 0.7676291 0.8751079 

RMSE 0.1580064 0.143725 0.1266738 0.09564912 

MSE 0.02496602 0.02065688 0.01604626 0.009148755 

MAE 0.127673 0.1103865 0.09795375 0.06541024 

Prediction 

 

r 0.5519677 0.7211824 0.09139431 0.5684539 

RMSE 0.2272806 0.199109 0.3211489 0.2759233 

MSE 0.05165646 0.03964439 0.1031366 0.07613369 

MAE 0.1943521 0.1671411 0.2393244 0.2504432 

 

Table 2: Performance comparison with tuned ELM ( ̃    ) 

 

Comparing predictions provided by the proposed (ELM) and respectively MLRE method, we can 

conclude that the ELM tuned by a Breeder genetic algorithm is capable to provide greater accuracy in 

prediction of the mesiodistal width of unerupted teeth as can be seen in the figure 5 and respectively in 

table 3. 
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Figure 5: Comparing prediction errors for the two methods: ELM and MLRE 

 

    

ELM (15 

nodes) 

Boboc 

(MLRE) 

Prediction 

 

r 0.7211824 0.6519263 

RMSE 0.199109 0.230186 

MSE 0.03964439 0.05298558 

MAE 0.1671411 0.1938037 

 
Table 3: Comparing prediction errors (ELM and MLRE) using performance metrics 

4 Conclusions 

Tuning the ELM using a genetic algorithm provide better results than empirical approach. The fast 

learning speed of an Extreme Learning Machine is crucial in obtaining a reasonable time for the 

tuning process. After evaluation, we found that our proposed method is providing a better prediction 

than original MLRE method. Thus, the prediction error rates of tuned ELM using the Breeder genetic 

algorithm are smaller than those provided by the multiple linear regression equations proposed in [4]. 

We intend to do more tests to be done on large data sets. Also, will be interesting to compare an ELM 

with a backpropagation trained neural network in terms of speed and prediction accuracy. 
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